检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
启动推理服务 本章节主要介绍大语言模型的推理服务启动方式,包括离线推理和在线推理2种方式。 离线推理 编辑一个python脚本,脚本内容如下,运行该脚本使用ascend-vllm进行模型离线推理。 from vllm import LLM, SamplingParams def
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
执行训练任务(推荐) 新的训练方式将统一管理训练日志、训练结果和训练配置,使用yaml配置文件方便用户根据自己实际需求进行修改。推荐用户使用该方式进行训练。 权重文件支持以下组合方式,用户根据自己实际要求选择: 训练stage 不加载权重 增量训练:加载权重,不加载优化器(默认开启)
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
语言模型推理性能测试 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。若未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
在ModelArts Standard上运行GPU单机多卡训练作业 操作流程 准备工作: 购买服务资源(VPC、SFS、SWR和ECS) 配置权限 创建专属资源池(打通VPC) 在ECS服务器挂载SFS Turbo存储 在ECS中设置ModelArts用户可读权限 安装和配置OBS命令行工具
执行训练任务(推荐) 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
依赖和委托 功能依赖 功能依赖策略项 您在使用ModelArts的过程中,需要和其他云服务交互,比如需要在提交训练作业时选择指定数据集OBS路径和日志存储OBS路径。因此管理员在为用户配置细粒度授权策略时,需要同时配置依赖的权限项,用户才能使用完整的功能。 如果您使用根用户(与账
从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
Lite Server资源开通 图1 Server资源开通流程图 表1 Server资源开通流程 阶段 任务 准备工作 1、申请开通资源规格。 2、资源配额提升。 3、基础权限开通。 4、配置ModelArts委托授权。 5、创建虚拟私有云。 6、创建密钥对。(可选,若为密码登录方式则不需要)
示例:从 0 到 1 制作自定义镜像并用于训练(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
从0制作自定义镜像用于创建训练作业(Pytorch+Ascend) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是专属资源池的Ascend芯片。 准备工作 准备一套可以连接外部网络,装有Linux系统并安装18
从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_
示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
部署推理服务 本章节介绍如何使用vLLM 0.3.2框架部署并启动推理服务。 前提条件 已准备好Server环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的Server和昇腾Snt9b资源。 确保容器可以访问公网。 Step1 检查环境 SSH登录机器后,检查