检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
RC1镜像 无 算子,包名:AscendCloud-OPP Scatter、Gather算子性能提升,满足MoE场景 昇腾随机数生成算子与GPU保持一致 支持GroupNorm+transpose+BMM融合算子 FFN推理算子支持geglu激活函数 支持配套pybind推理的10+算子(matmul
请参见各服务价格详情。 示例:使用公共资源池。计费项:计算资源费用 + EVS存储费用 假设用户于2023年4月1日10:00:00创建了一个Notebook实例,使用规格为CPU: 8 核 32GB、计算节点个数为1个的公共资源池和磁盘规格为5GB的运行盘(总计单价:3.407
”,或者“保存到对象存储服务(OBS)”。 “属性名称”:当选择“更新属性到当前样本中”时,需输入一个属性名称。 “结果存储目录”:当选择“保存到对象存储服务(OBS)”时,需指定一个用于存储的OBS路径。 “高级特征选项”:启用此功能后,可选择“清晰度”、“亮度”、“图像色彩”
ModelArts Standard资源监控概述 为了满足用户对资源使用的监控诉求,ModelArts Standard提供了多种监控查看方式。 方式一:通过ModelArts Standard控制台查看 您在可通过ModelArts控制台的总览页或各模块资源监控页签查看监控指标。具体涉及以下几个方面:
1。 不同类型标签列数据产生的评估结果说明请参见评估结果说明。 图1 模型评估报告 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
推荐使用“西南-贵阳一”Region上的昇腾资源。 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,
推荐使用“西南-贵阳一”Region上的昇腾资源。 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,
使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。 前提条件 确保您使用的OBS目录与ModelArts在同一区域。 创建模型操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“模型管理”,进入模型列表页面。 单击左上角的“创建模型”,进入“创建模型”页面。
您可以通过链接下载ATC模型转换工具,按照指导,在线下转换成.om格式模型。 ModelArts中是否还会增加模型转换的能力? ModelArts开发环境中在贵阳一Region,支持将ONNX或PyTorch模型转换到.mindir格式。其它能力在持续增加中。若您暂时无法在该region中使用该能力,您可以通过链接下载MindSpore
推荐使用“西南-贵阳一”Region上的昇腾资源。 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,
hostPath: path: ${node-path} 参数说明: ${container_name}:容器名称,此处可以自己定义一个容器名称,例如ascend-vllm。 ${image_name}:Step3 制作推理镜像构建的推理镜像名称。 ${node-path}
引入MoXing Framework。 在已有的“modelarts-test08/moxing”目录下,创建一个“test01”文件夹。 调用代码检查“test01”文件夹是否存在,如果存在,表示上一个操作已成功。 1 2 3 4 import moxing as mox mox.file.
可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ
hostPath: path: ${node-path} 参数说明: ${container_name}:容器名称,此处可以自己定义一个容器名称,例如ascend-vllm。 ${image_name}:Step3 制作推理镜像构建的推理镜像名称。 ${node-path}
可在右侧下拉框选择已有数据集,或单击“创建数据集”前往新建数据集。 已有数据集:在“数据集”右侧的下拉框中选择,仅展示同类型的数据集供选择。 创建数据集:前往创建数据集页面创建一个新的数据集。具体操作请参考创建ModelArts数据集。 “标签列” 可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将
可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ
的值的目标路径(Json PATH)。当前支持且仅支持对模型相关所有参数的替换更新,因此前缀固定为“/config/”。例如,当期望更新第一个模型中的实例数量,则路径为“/config/0/instance_count”。 value 否 String 替换的目标值。 响应参数 状态码:
综上,运行自动学习作业的费用 = 标准存储费用 示例:使用公共资源池运行Workflow工作流。计费项:计算资源费用和标准存储费用 假设用户于2023年4月1日创建了一个Workflow实例,并在10:00:00运行实例进行模型训练,在11:00:00进行服务部署,并在11:30:00停止运行。同时,使用公共资源池运行实例,资源池规格为CPU:
过滤事件发生时间的截止时间,默认不过滤。 offset 否 Integer 分页列表的起始页,默认为0。 limit 否 Integer 指定每一页返回的最大条目数,默认为1000。 sort_by 否 String 指定排序字段,默认为occur_time(事件产生时间)。 order
可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。可根据自己要求适配 cutoff_len 4096 文本处理时的最大长度,此处为4096,用户可根据自己要求适配