检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
{ModelArts提供的训练基础镜像地址} # 配置pip RUN mkdir -p /home/ma-user/.pip/ COPY --chown=ma-user:ma-group pip.conf /home/ma-user/.pip/pip.conf # 设置容器镜像预置环境变量 #
title="title_info", description="description_info") # name字段必填,title, description可选填 # 定义输入的OBS对象 obs_data = wf.data.OBS
迁移效果校验 在pipeline适配完成后,需要验证适配后的效果是否满足要求,通过对比原始onnx pipeline的最终输出结果确认迁移效果。如果精度和性能都没有问题,则代表迁移完成。 对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite
以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据集预处理,并检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行训练任务。如果未进行数据集预处理,则会自动执行scripts/llama2/1_preprocess_data
MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上 各GPU上的模型进行前向传播,得到输出 主GPU(逻辑序号为0)收集各GPU的输出,汇总后计算损失 分发损失,各GPU各自反向传播梯度
${Port} 参数说明: - IdentityFile:本地密钥路径 - User:用户名,例如:ma-user - HostName:IP地址 - Port:端口号 在VS Code中手工配置远程连接时,在本地的ssh config文件中增加配置参数“StrictHostKeyChecking
OBS桶需要与ModelArts在同一区域。 数据集要求 保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 每一类数据尽量多,尽量均衡。期望获得良好效果,图像分类项目中,至少有两种以上的分类,每种分类的样本不少于20张。
部署在线服务支持开启APP认证,即ModelArts会为服务注册一个支持APP认证的接口,为此接口配置APP授权后,用户可以使用授权应用的AppKey+AppSecret或AppCode调用该接口。 针对在线服务的APP认证,具体操作流程如下。 开启支持APP认证功能:开启支持APP认
该镜像所对应的描述信息,长度限制512个字符。 dev_services Array of strings 镜像支持的服务。枚举值如下: NOTEBOOK:镜像支持通过https协议访问Notebook。 SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Note
多文件任意编排 当在一个Notebook中写代码时,如果需要实时同步编辑文件并查看执行结果,可以新建该文件的多个视图。 打开ipynb文件,然后单击菜单栏“File > New View for Notebook”,即可打开多个视图。 图9 同一个文件的多个视图 JupyterLab的i
以llama2-13b举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据集预处理,并检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行训练任务。如果未进行数据集预处理,则会自动执行scripts/llama2/1_preprocess_data
e等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表 ModelArts中预置的训练基础镜像如下表所示。 表1 ModelArts训练基础镜像列表 引擎类型
源包名。也支持指定OBS路径,例如:obs://桶名/包名。也支持本地文件。如果需要指定多个参数,可以使用--python-files py1 --python-files py2。 --groups Array of String 否 资源分组名称,如果需要指定多个参数,可以使用--groups
llama2-13b 举例,使用训练作业运行:obs_pipeline.sh 训练脚本后,脚本自动执行数据集预处理,并检查是否已经完成数据集预处理。 如果已完成数据集预处理,则直接执行训练任务。若未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
查询Notebook支持的有效规格列表 功能介绍 查询运行Notebook实例所支持的有效规格列表。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI
# run on container # 基于想要迁移的base环境创建一个名为pytorch的conda环境 conda create --name pytorch --clone base pip install conda-pack #将pytorch env打包生成pytorch
针对启用团队标注功能的数据标注任务,支持创建团队标注任务,将标注任务指派给不同的团队,由多人完成标注任务。同时,在成员进行数据标注过程中,支持发起验收、继续验收以及查看验收报告等功能。 团队标注功能是以团队为单位进行管理,数据集启用团队标注功能时,必须指定一个团队。一个团队可以添加多个成员。 一个账号最多可添加10个团队。
图像分类对数据集的要求 文件名规范:不能有+、空格、制表符。 保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 每一类数据尽量多,尽量均衡。期望获得良好效果,图像分类项目中,至少有两种以上的分类,每种分类的样本不少于20张。
--parallel-num:每轮并发数,支持多个,如 1 4 8 16 32。 --prompt-tokens:输入长度,支持多个,如 128 128 2048 2048,数量需和--output-tokens的数量对应。 --output-tokens:输出长度,支持多个,如 128 2048 128
2-py_3.7-euler_2.10.7-aarch64-snt9b-20231009152946-e7b7e70 父主题: ModelArts支持的预置镜像列表