检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的训练数据,缓解了存储资源有限的问题;另一方面,增量训练节约了重新训练中需要消耗大量算力、时间以及经济成本。
自定义镜像的使用流程 托管自定义镜像,操作步骤请参考托管模型到AI Gallery。 如果自定义镜像要支持训练,则需要满足自定义镜像规范(训练)。 如果自定义镜像要支持推理,则需要满足自定义镜像规范(推理)。 上架自定义镜像,操作步骤请参考发布模型到AI Gallery。 在AI Gallery进行自定义镜像训练或推理。使用AI
Integer 当前查询结果的服务数量,不设置offset、limit查询参数时,count与total相同。 services service结构数组 查询到的服务集合。 表3 service结构 参数 参数类型 描述 service_id String 服务ID。 service_name
托管镜像到AI Gallery 创建镜像资产 登录AI Gallery,单击右上角“我的Gallery”进入我的Gallery页面。 单击左上方“创建资产”,选择“镜像”。 在“创建镜像”弹窗中配置参数,单击“创建”。 表1 创建镜像 参数名称 说明 英文名称 必填项,镜像的英文名称。
上传OBS文件到JupyterLab 在Notebook的JupyterLab中,支持将OBS中的文件下载到Notebook。注意:文件大小不能超过10GB,否则会上传失败。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts
在控制台左侧导航栏的服务列表,选择“对象存储服务OBS”,进入OBS服务详情页面。 在左侧导航栏选择“桶列表”,在列表详情,找到自己创建的OBS桶,单击桶名称,进入OBS桶详情。 在桶的详情页,左侧导航栏选择“对象”,在右侧“名称”列选中不需要的存储对象,单击操作列的“更多>删除”,即可删除相应的存储对象。 常见问题
配置Workflow的输入输出目录 功能介绍 统一存储主要用于工作流的目录管理,帮助用户统一管理一个工作流中的所有存储路径,主要分为以下两个功能: 输入目录管理:开发者在编辑开发工作流时可以对所有数据的存储路径做统一管理,规定用户按照自己的目录规划来存放数据,而存储的根目录可以根据用户自己的需求自
whl" } ] } ] 模型配置文件的“dependencies”支持多个“dependency”结构数组以list形式填入。 示例如下: "dependencies": [ { "installer": "pip", "packages":
调用成功时无此字段。 job_total_count Integer 查询到的用户创建作业总数。 job_count_limit Integer 用户还可以创建训练作业的数量。 jobs jobs结构数组 训练作业的属性列表,具体请参见表4。 quotas Integer 训练作业的运行数量上限。
导入数据到ModelArts数据集 数据导入方式介绍 从OBS导入数据到ModelArts数据集 从DWS导入数据到ModelArts数据集 从DLI导入数据到ModelArts数据集 从MRS导入数据到ModelArts数据集 从本地上传数据到ModelArts数据集 父主题:
示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
发布模型到AI Gallery 除了Gallery提供的已有资产外,还可以将个人创建的资产发布至Gallery货架上,供其他AI开发者使用,实现资产共享。 模型资产上架 登录AI Gallery,选择右上角“我的Gallery”。 在左侧“我的资产 > 模型”下,选择未发布的模型,单击模型名称,进入模型详情页。
发布镜像到AI Gallery 除了Gallery提供的已有资产外,还可以将个人创建的资产发布至Gallery货架上,供其他AI开发者使用,实现资产共享。 镜像资产上架 登录AI Gallery,选择右上角“我的Gallery”。 在“我的资产 > 镜像”下,选择未发布的镜像,单击镜像名称,进入镜像详情页。
示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3fn"。dtype类型不影响int8的scale系数的抽取和加载。 启动kv-cache-int8-per-tensor量化服务。
Integer 当前查询结果的服务数量,不设置offset、limit查询参数时,count与total相同。 services service结构数组 查询到的服务集合。 表3 service结构 参数 参数类型 描述 service_id String 服务ID。 service_name
在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与对象存储OBS的交互。可通过如下方式进行调整优化。 优化原理 对于Mo
object 集群节点配置。 allocatable_cpu_cores Float 可使用的CPU核数。 product_id String 产品ID,仅当集群为包周期类型时返回。 allocatable_gpus Float 可使用的GPU核数。 order_id String 购买产品
适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。 temperature 否 1.0 Float 控制采样的随机性的浮点数。较低的值使模型更加确定性,
调用失败时的错误码,具体请参见错误码。 调用成功时无此字段。 spec_total_count Integer 作业资源规格总数。 specs specs结构数组 资源规格参数列表,如表4所示。 表4 specs属性列表说明 参数 参数类型 说明 spec_id Long 资源规格的ID。 core