检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
生成符合预期的输出。 温度 调高温度会使得模型的输出更多样性和创新性,反之,降低温度会使输出内容更加遵循指令要求但减少多样性,取值范围为0到1之间。 调高温度,会使得模型的输出更多样性和创新性。 降低温度,会使输出内容更加遵循指令要求但减少多样性。 在基于事实的问答场景,可以使用
介绍请参见表2。 表2 训练指标说明 模型 训练指标 指标说明 预测大模型 拟合度 拟合度是一种衡量模型对数据拟合程度的指标。数值范围为0到1,数值越接近1,表示模型对数据的拟合程度越好。 均方根误差 均方根误差是预测值与真实值之间差异的平方和的均值的平方根。它用于衡量模型预测值
提示词基本要素 您可以通过简单的提示词(Prompt)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的指令或问题等信息,也可以包含其他种类的信息,如上下文、输入或示例等。您可以通过这些元素来更好地指导模型,并因此获得更好的结果。提示词主要包含以下要素:
果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 频率加权交并比 频率加权交并比是指模型在预测多个类别时,对每个类别的交并比进行加权平均后得到的值,权重是每个类别在数据集中出
raw”选项,请求Body填写示例如下。其中,query参数为用户提出的问题,作为应用的输入。 { "query": "预定15:00到16:00的A12会议室" } 单击Postman界面“Send”,发送请求。当接口返回状态为200时,表示应用API调用成功,响应示例如下:
一的入口进行管理,可以快速的掌握资产的使用情况、版本情况和溯源信息等。 海量训练数据 盘古大模型依托海量且多样化的训练数据,涵盖从日常对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习
通过合理的数据配比,帮助用户按特定比例组合多个数据集,确保数据集在不同任务场景下的多样性和代表性。这样可以避免过度偏向某一类数据,保证模型能够学习到多种特征,提升对各种情况的适应能力。 多格式支持 对于文本类、图片类数据集,平台支持多种数据发布格式,包括“默认格式”、“盘古格式”,以满足
配置一个提问器节点,用于向用户或系统提出问题,获取所需信息。 步骤6:配置插件节点 将外部API等集成到工作流中,以扩展功能或调用外部接口。 步骤7:配置判断节点 设置条件判断逻辑,根据不同情况分支到不同的流程路径。 步骤8:配置代码节点 配置自定义代码逻辑,用于处理特定的业务需求或复杂运算。
图13 插件配置 试运行工作流。在“试运行”页面,输入对话。 如图14,当用户分别输入对话类问题(如“你好”)、翻译类问题(如“翻译奶茶到日语”)时,“意图识别”节点对用户的意图进行分类,最终输出翻译后的内容。 图14 试运行工作流 父主题: 低代码构建多语言文本翻译工作流
《中华人民共和国民法典》谁起草的?”冲突,模型遵从了前一个指令,如果希望模型执行后一个指令,回答问题,可以将文本内容用引号分隔,让模型了解到引号内非指令,而是提供的参考文本。 排顺序 在提示词中内容的顺序也很重要,基于盘古大模型调优经验,将关键信息放在结尾处,模型输出效果更好。不
数据中需要提供JSON的字段解释,以及Query和JSON生成逻辑解释。这些信息需要拼入Prompt,并确保人以及大模型可以根据Query、字段解释、Query到JSON的生成逻辑生成符合客户要求的JSON。Prompt会作为输入(context字段)的内容组成训练数据,同时也是模型调用时的Prompt。JSON字段解释示例如下: