检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts中使用自定义镜像创建在线服务,如何修改端口? 当模型配置文件中定义了具体的端口号,例如:8443,创建模型没有配置端口,或者配置了其他端口号,均会导致服务部署失败。您需要把模型中的端口号配置为8443,才能保证服务部署成功。 修改默认端口号,具体操作如下: 登录ModelArts控制台,左侧菜单选择“模型管理”;
Files\OpenSSH-xx”(路径中包含ssh可执行exe文件)添加到环境系统变量中。 重新打开CMD,并执行ssh,结果如下图即说明安装成功,如果还未装成功则执行5和6。 OpenSSH默认端口为22端口,开启防火墙22端口号,在CMD执行以下命令: netsh advfirewall firewall
如何查看ModelArts的Notebook使用的cuda版本? 执行如下命令查看环境中的cuda版本。 ll /usr/local | grep cuda 举例: 图1 查看当前环境的cuda版本 如图1所示,当前环境中cuda版本为10.2 父主题: Standard Notebook
训练作业失败,返回错误码139 问题现象 训练作业运行失败,返回错误码139,如下图所示: [Modelarts Service Log]Training end with reeturn code: 139 INFO:root:Using MoXing-v1.17.2-c806a92f
${User}@${HostName} -p ${Port} rm -rf /home/ma-user/.vscode-server/bin/ 参数说明: - IdentityFile:本地密钥路径 - User:用户名,例如:ma-user - HostName:IP地址 - Port:端口号 vscode-
SQL需要放行的端口。 MySQL 3306 MySQL数据库对外提供服务的端口。 Windows Server Remote Desktop Services 3389 Windows远程桌面服务端口,通过这个端口可以连接Windows弹性云服务器。 代理 8080 8080端口常用于W
一般情况都是模型的端口配置有问题。建议您首先检查创建模型的端口是否正确。 处理方法 模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。 如何修改默认端口号,请参考使用自定义镜像创建在线服务,如何修改默认端口。 父主题:
SSH版本,如果低于v0.76.1,请升级Remote-SSH。 打开命令面板(Windows: Ctrl+Shift+P,macOS:Cmd+Shift+P),搜索“Kill VS Code Server on Host”,选择出问题的实例进行自动清除,然后重新进行连接。 图1
<密钥相对路径> -p <端口> ma-user@<域名/ip> SSH可用时跳过3继续远端排查。 SSH不可用,排查3。 在VS Code Terminal里执行如下检查网络。如果网络异常,请执行命令检查端口。 curl -kv telnet://<域名/ip>:<port> 端口有问题,请联系技术支持。
specified: 'c:\python39\Scripts\ephemeral-port-reserve.exe' -> 'c:\python39\Scripts\ephemeral-port-reserve.exe.deleteme ”。 原因分析 用户使用权限问题导致。 处理方法
ModelArts会帮用户生成RANK_TABLE_FILE文件,可通过环境变量查看文件位置。 在Notebook中打开terminal,可以运行如下命令查看RANK_TABLE_FILE: 1 env | grep RANK 在训练作业中,您可以在训练启动脚本的首行加入如下代码,把RANK_TABLE_FILE的值打印出来:
i.com不通过公网代理,huaweicloud.com域名在no_proxy/NO_PROXY中包含,就访问不了。 解决方式 执行以下命令查看在no_proxy/NO_PROXY中是否包含huaweicloud.com域名。 env | grep -i no_proxy 如果包
1f-mind/ --hccl_config /user/config/jobstart_hccl.json --cmd_file ./distributed_cmd.sh bash scripts/run_distributed_pretrain_ascend.sh /home
$MASTER_ADDR \ --master_port=$MASTER_PORT \ --use_env \ $PYTHON_SCRIPT \ $PYTHON_ARGS " echo $CMD $CMD torchrun.sh内容如下: PyTorch
--master_addr=$MASTER_ADDR \ --master_port=$MASTER_PORT \ --use_env \ $PYTHON_SCRIPT \ $PYTHON_ARGS " echo $CMD $CMD 父主题: 分布式模型训练
像中相同的启动命令。 提供的服务可使用HTTPS/HTTP协议和监听的容器端口,使用的协议和端口号请根据模型实际定义的推理接口进行配置。HTTPS协议的示例可参考https示例。 (可选)服务对外提供的端口,提供URL路径为“/health”的健康检查服务(健康检查的URL路径必须为“/health”)。
元模型来源:选择“从容器镜像中选择” 容器镜像所在的路径:选择已制作好的自有镜像 图4 选择已制作好的自有镜像 容器调用接口:指定模型启动的协议和端口号。请确保协议和端口号与自定义镜像中提供的协议和端口号保持一致。 镜像复制:选填,选择是否将容器镜像中的模型镜像复制到ModelArts中。 健康检查:选填,用于指
在创建模型时填写与您镜像中相同的启动命令。 提供的服务可使用HTTPS/HTTP协议和监听的容器端口,端口和协议可根据镜像实际使用情况自行填写,ModelArts提供的请求协议和端口号的缺省值是HTTPS和8080。请参考https示例。 (可选)健康检查的URL路径必须为"/health"。
元模型来源:选择“从容器镜像中选择” 容器镜像所在的路径:选择已制作好的自有镜像 图4 选择已制作好的自有镜像 容器调用接口:指定模型启动的协议和端口号。请确保协议和端口号与自定义镜像中提供的协议和端口号保持一致。 镜像复制:选填,选择是否将容器镜像中的模型镜像复制到ModelArts中。 健康检查:选填,用于指
TensorFlow Serving是一个灵活、高性能的机器学习模型部署系统,提供模型版本管理、服务回滚等能力。通过配置模型路径、模型端口、模型名称等参数,原生TFServing镜像可以快速启动提供服务,并支持gRPC和HTTP Restful API的访问方式。 Trito