检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户若购买开通多个节点机器资源,并使用多机进行分
当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户若购买开通多个节点机器资源,并使用多机进行分
当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户若购买开通多个节点机器资源,并使用多机进行分
当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户若购买开通多个节点机器资源,并使用多机进行分
当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户若购买开通多个节点机器资源,并使用多机进行分
当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户如果购买开通多个节点机器资源,并使用多机进行分
当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169.254.169.254),以防止容器获取宿主机的元数据。具体操作请参见禁止容器获取宿主机元数据。 购买共享存储硬盘资源(多机训练场景) 用户若购买开通多个节点机器资源,并使用多机进行分
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # 将其中一个节点设为头节点 ray start --head --num-gpus=8 # 在其他节点执行 ray start --address='10.170.22.18:6379' --num-gpus=8
png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在第一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配LlamaFactory
png中也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在第一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配LlamaFactory
看指标的方式,说明如何进行仪表盘配置。Grafana的更多使用请参考Grafana官方文档。 准备工作 ModelArts提供了集群视图、节点视图、用户视图、任务视图和任务详细视图这5个模板,这些模板在Grafana官方文档可以搜索下载,您导入模板配置Dashboards时,可直接使用。
可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在最后一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于Lite Cluster适配PyTorch
nPipeError: [Errno xx] Broken pipe”。 原因分析 出现该问题的可能原因如下: 在大规模分布式作业上,每个节点都在复制同一个桶的文件,导致OBS桶限流。 OBS Client连接数过多,进程/线程之间的轮询,导致一个OBS Client与服务端连接
原因分析 worker阻塞的原因可能是连不上server。 处理方法 将如下代码放在“启动文件”里“import mxnet”之前可以看到节点间相互通信状态,同时ps能够重新发送。 import os os.environ['PS_VERBOSE'] = '2' os.environ['PS_RESEND']
将权重文件上传到集群节点机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 Step2 配置pod 在节点自定义目录
将权重文件上传到集群节点机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 Step2 配置pod 在节点自定义目录
Notebook列表页 已有50个Notebook实例,在ModelArts控制台主页面单击开发环境后的时间。 4.5秒 镜像下载时间受节点规格、节点硬盘类型(高IO/普通IO)、是否SSD等因素影响,以上数据仅供参考。 父主题: 基于ModelArts Standard运行GPU训练作业
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # 将其中一个节点设为头节点 ray start --head --num-gpus=8 # 在其他节点执行 ray start --address='10.170.22.18:6379' --num-gpus=8
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # 将其中一个节点设为头节点 ray start --head --num-gpus=8 # 在其他节点执行 ray start --address='10.170.22.18:6379' --num-gpus=8
s收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。 单节点训练:训练过程中的loss直接打印在窗口上。 多节点训练:训练过程中的loss打印在第一个节点上。 图2 Loss收敛情况(示意图) 注:ppo训练结束不会打印性能。建议根据保存路径下的trainer_log