检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
PYTHONUNBUFFERED=1 RUN /home/ma-user/anaconda/bin/pip install --no-cache-dir numpy 构建新镜像。在Dockerfile文件所在的目录执行如下命令构建容器镜像training:v1。 docker build
信息。 将GPU设备训练输出的trainer_state.json文件重命名为trainer_state_gpu.json,并复制到NPU节点的容器内,将NPU设备训练输出的trainer_state.json文件重命名为trainer_state_npu.json。 对其进行解
专属资源池规格以“Dedicated Resource Pool”标识。只有购买了专属资源池的用户才会显示专属资源池规格。 Compute Nodes 计算资源节点个数。数量设置为1时,表示单机运行;数量设置大于1时,表示后台的计算模式为分布式。 Available/Total Nodes 当“Spe
DatasetVersion 参数 参数类型 描述 add_sample_count Integer 新增样本数量。 analysis_cache_path String 特征分析的缓存路径。 analysis_status Integer 特征分析任务的当前状态。可选值如下: 0:初始化 1:运行中
imator参数说明”表下的说明查询修改 train_instance_count=1, # 节点数,适用于多机分布式训练,默认是1 #pool_id='若指定专属池,替换为页面上查到的poo
支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ https://huggingface.co/huggyllama/llama-7b
rification.py 环境变量:添加“MY_SSHD_PORT = 38888” 资源池:选择公共资源池 类型:选择GPU规格 计算节点个数:选择“1”或“2” 永久保存日志:打开 作业日志路径:设置为OBS中存放训练日志的路径。例如:“obs://test-modelarts/mpi/log/”
ython进程。 pkill -9 python ps -ef 图8 关闭训练进程 limit/request配置cpu和内存大小,已知单节点Snt9B机器为:8张Snt9B卡+192u1536g,请合理规划,避免cpu和内存限制过小引起任务无法正常运行。 父主题: Lite Cluster资源使用
用委托完成访问授权。 已创建用于存储数据的OBS桶及文件夹。并且,数据存储的OBS桶与ModelArts在同一区域。当前不支持OBS并行文件系统,请选择OBS对象存储。 ModelArts不支持加密的OBS桶,创建OBS桶时,请勿开启桶加密。 创建数据集(图片、音频、文本、视频、自由格式)
序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持W8A16量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ √ https://huggingface.co/huggyllama/llama-7b
在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资源池,计算节点规格选择snt9b,部署超时时间建议设置为40分钟。此处仅介绍关键参数,更多详细参数解释请参见部署在线服务。 图3 部署在线服务-专属资源池
它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部分参数训练、LoRA、QLoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。
使用Advisor工具分析生成调优建议 关于Advisor使用及安装过程请参见昇腾社区Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train
它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部分参数训练、LoRA、QLoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。
序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持W8A16量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ √ https://huggingface.co/huggyllama/llama-7b
eed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而 install.sh 则会在容器内安装依赖以及下载完整的代码。当训练作业结束后,对应的容器也会同步销毁。
String 存储类型。 当前支持“obs”、“obsfs” 和“evs”,其中,obsfs类型当前仅支持部分专属资源池。若您需要挂载OBS并行文件系统,请提工单。 location 否 Object 存储位置,如果type为“obs”类型,该参数必须填写,如表5所示数据结构,如缺省值为“NULL”。
默认关闭,在线服务的运行日志仅存放在ModelArts日志系统。 启用运行日志输出后,在线服务的运行日志会输出存放到云日志服务LTS。LTS自动创建日志组和日志流,默认缓存7天内的运行日志。如需了解LTS专业日志管理功能,请参见云日志服务。 说明: “运行日志输出”开启后,不支持关闭。 LTS服务提供的日志查
MA-Advisor和Ascend-Insigh工具使用指导 MA-Advisor:一款昇腾迁移性能问题自动诊断工具,支持对推理、训练等多种场景进行自动诊断。自动诊断工具可以有效减少人工分析profiling的耗时,降低性能调优的门槛,帮助客户快速识别性能瓶颈点并完成性能优化。推
在ModelArts控制台,单击“模型部署 > 在线服务 > 部署”,开始部署在线服务。 设置部署服务名称,选择Step2 部署模型中创建的AI应用。选择专属资源池,计算节点规格选择snt9b,部署超时时间建议设置为40分钟。此处仅介绍关键参数,更多详细参数解释请参见部署在线服务。 图3 部署在线服务-专属资源池