检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时需要指明“上面的xxx”。例如:“为什么你认为上面的xxx是xxx类别?为什么上面的xxx不是xxx类别?”,否则模型会认为用户反问是个新问题
可以使用较小的学习率和较小的数据批量大小,避免过拟合。 通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习率和较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。 这里提供了一些微调参数的建议值和说明,供您参考: 表1 微调参数的建议和说明
Studio大模型开发平台承载,它提供了包括盘古大模型在内的多种大模型服务,提供覆盖全生命周期的大模型工具链。 产品介绍 立即使用 在线体验 图说ECS 成长地图 由浅入深,带您玩转盘古大模型 01 了解 了解盘古大模型的概念、优势、应用场景以及模型能力与规格,您将更全面地掌握其强大功能,
如何判断任务场景应通过调整提示词还是场景微调解决 在选择是否通过调整提示词或场景微调来解决任务时,需要从以下两个主要方面进行考虑: 业务数据的可获取性 考虑该任务场景的业务数据是否公开可获取。如果该场景的相关数据可以公开获取,说明模型在训练阶段可能已经接触过类似的语料,因此具有一
可以使用较小的学习率和较小的数据批量大小,避免过拟合。 通用模型的规格:如果模型参数规模较小,那么可能需要较大的学习率和较大的批量大小,以提高训练效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。 表1提供了一些微调参数的建议值和说明,供您参考: 表1 典型微调参数说明
可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。 模型规格:不同规格的模型支持的长度不同,若目标任务本身需要生成的长度已经超过模型上限,建议您替换可支持更长长度的模型。 数据质量:请检查训练数据中是否存
务时,需要填写外部模型的接口名称、接口地址、请求体、响应体等信息。 请求体支持openai、tgi、自定义三种格式。openai格式即是由OpenAI公司开发并标准化的一种大模型请求格式;tgi格式即是Hugging Face团队推出的一种大模型请求格式。 接口的响应体需要按照j
盘古大模型功能。 申请试用盘古大模型服务 订购盘古大模型服务 正式使用盘古大模型服务前,需要完成服务的订购操作。 订购盘古大模型服务 配置服务访问授权 为了能够正常的存储数据、训练模型,需要用户配置盘古访问OBS的权限。 配置服务访问授权 创建并管理盘古工作空间 平台支持用户自定义创建工作空间,并进行空间的统一管理。
由于数据工程需要支持对接盘古大模型,为了使这些数据集能够被这些大模型正常训练,平台支持发布不同格式的数据集。 当前支持标准格式、盘古格式: 标准格式:数据工程功能支持的原始格式。该格式的数据集可发布到资产中,但下游模型开发不可见。 盘古格式:使用盘古大模型训练时所需要使用的数据格式,该数据集将被用于ModelArts
模型调优方法介绍 在实际应用中,首次微调所得的模型往往无法取得最佳效果,为了让模型能更好地解决特定场景任务,通常需要根据微调所得模型的效果情况来进行几轮的模型微调优化迭代。 在大模型的微调效果调优过程中,训练数据优化、训练超参数优化、提示词优化以及推理参数优化是最重要的几个步骤。
的设置会影响模型的生成质量和多样性,因此需要根据不同的场景进行选择。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent开发 > 提示词工程 > 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。
鼓励大模型解释推理过程,可以引导大模型生成准确率更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx
个网格代表更大范围的区域,但局部的细节信息可能会被忽略,较小的patch_size则相反。需要注意: 数据格式为[int,int,int],第一个值需要大于0小于等于4,第二、三个参数都需要大于1小于等于20。 在高方向patch_size[0]*window_size[0]需小于高空层次个数。
才允许支持内网URL,且需要通过相关的服务的启动配置项关闭内网屏蔽。 请求方法 插件服务的请求方式,POST或GET。 权限校验 选择调用API时是否需要通过鉴权才可以调用。 无需鉴权:API可以公开访问,不需要任何形式的身份验证或授权。 用户级鉴权:需要用户提供身份验证信息来访问API。
数据预处理优化 模型训练前,需要对数据进行加工,防止某些特征存在极端异常值或大面积错误数据,导致模型训练不稳定。可能会引发如下问题: 模型对异常值过度敏感,导致拟合异常值而非整体数据分布。 训练过程中损失波动较大,甚至出现梯度爆炸。 模型在测试集上表现不佳,泛化能力差。 优化调整策略如下:
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
选择“盘古大模型” 模型类型 选择“科学计算大模型”。 场景 本案例中选择“区域中期海洋智能预测”。 部署模型 从资产中选择需要部署的模型。 部署区域中期海洋智能预测服务需要同时选择“区域中期海洋智能预测”和“全球中期海洋智能预测”两个模型。 部署方式 选择“云上部署”。 作业输入方式 选择
变量值信息。 输入变量值后预览区域会自动组装展示提示词。也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 效果预览 单击“查看效果”,输出模型回复结果,用户可以基于预览的效果调整提示词文本和变量。
部分模型资产支持边缘部署方式,若选择“边缘部署”: 资源池:选择部署模型所需的边缘资源池,创建边缘资源池步骤请详见创建边缘资源池。 CPU:部署需要使用的最小CPU值(物理核)。 内存:部署需要使用的最小内存值。 Ascend:部署使用的NPU数量。 负载均衡:创建负载均衡步骤请详见步骤5:创建负载均衡。 实例数:设置部署模型时所需的实例数。
包周期资源到期后,如果您想继续使用服务,需要在保留期内进行手动续费,否则不能再对已过保留期的服务进行续费操作,需重新购买对应的服务。了解更多关于续费的信息,请参见续费。 欠费 在使用云服务时,账户的可用额度小于待结算的账单,即被判定为账户欠费。欠费后,可能会影响云服务资源的正常运行,需要及时充值。详细介绍请参见欠费说明。