检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
on:表示文件系统的挂载点。 网络 在网络页面,您可以根据节点和网卡名称浏览指定节点的网络资源实时消耗情况。其中包括:节点名称、网卡名称、网卡状态、接收丢包数、接收速率(KB/s)、发送速率(KB/s)和网络监控情况等。 图5 网络页 用户可单击指定节点名称所在行最右侧的“监控”按钮,进入网络监控概览
终端节点 终端节点即调用API的请求地址,不同服务不同区域的终端节点不同,您可以从地区和终端节点中查询所有服务的终端节点。 图引擎服务的终端节点如下表所示,请您根据业务需要选择对应区域的终端节点。 表1 图引擎服务的终端节点 区域名称 区域 终端节点(Endpoint) 华北-北京一
Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。 Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/Q。每个节点出发生成多个随机步,反映出网络的结构信息。 适用场景
切换安全组(2.4.3) 功能介绍 该接口可以在图创建成功后,修改图的安全组。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_i
给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 节点的ID。 String
Centrality) 概述 中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域 参数说明 表1 Betweenness
Coefficient) 概述 聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。 适用场景 聚类系数算法(Cluster
最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 适用场景 最短路径算法(Shortest Path)适用于路径设计、网络规划等场景。 参数说明 表1 最短路径算法(Shortest Path)参数说明 参数 是否必选
点又称作节点(Node),边又称作关系(Relationship),点和关系是最重要的实体。 图数据模型中的点代表实体,如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 图数据模型中的边代表关系,如社交网络中的好友关系、电商交易网络中用户评分
Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness Centrality”越大,其在所在图中的位置越靠近中心。
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。 适用场景
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。 URI
Centrality)在已知一系列OD出行计划前提下,以经过某个点/某条边的最短路径数目来刻画边重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别,城市热点事件\早晚高峰人群车辆迁徙发生时关键路段的模拟;适用于社交、金融风控、交通路网、城市规划等领域 参数说明
Shortest Paths)是在最短路径算法(Shortest Path)基础上支持条件过滤,寻找图中两节点之间满足条件的全最短路径。 适用场景 适用于关系挖掘、路径规划、网络规划等场景。 参数说明 表1 Filtered All Shortest Paths参数说明 参数 是否必选
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
上后一条边的经过时间要晚于或等于前一条边,呈现时间递增(或非减)性。 时序路径不满足传递性:即从节点i到节点j有一条时序路径,从节点j到节点k有一条时序路径,并不能说明从节点i到节点k有一条时序路径。因此在求解问题上,相较于静态图上的路径求解复杂度升高,计算难度变大,但时序路径分
查询点详情 功能介绍 根据节点ID查询节点信息,返回节点详情,包括标签和属性等。 URI GET /ges/v1.0/{project_id}/graphs/{graph_name}/vertices/detail?vertexIds={vertex_ids} 表1 路径参数 参数
批量点查 功能介绍 根据批量节点ID查询节点信息,返回这些节点的详情,包括标签和属性等。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/vertices/action?action_id=batch-query 表1 路径参数
查询点详情(1.0.0) 功能介绍 根据节点ID查询节点信息,返回节点详情,包括标签和属性等。 URI GET /ges/v1.0/{project_id}/graphs/{graph_name}/vertices/detail?vertexIds={vertex_ids} 表1