检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Emebedding模块用于对Emebedding模型API的适配封装,提供统一的接口快速地调用CSS等模型emebedding能力。 初始化:根据相应模型定义Emebedding类,如使用华为CSS Embedding为:Embeddings.of("css");。 from pangukitsappdev
Embedding模块用于对Embedding模型API的适配封装,提供统一的接口快速地调用CSS模型embedding能力。 初始化:根据相应模型定义Embedding类。例如,使用华为CSS Embedding为:Embeddings.of(Embeddings.CSS);。 import com.huaweicloud
与其他云服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
embedding.css.iam.url= # sdk.embedding.css.iam.domain= # sdk.embedding.css.iam.user= # sdk.embedding.css.iam.password= # sdk.embedding.css.iam.project=
server_info=ServerInfoCss(env_prefix="sdk.memory.css")) vector_api = Vectors.of("css", vector_store_config) # 检索 query = "杜甫的诗代表了什么主义诗歌艺术的高峰?" docs = vector_api
server_info=ServerInfoCss(env_prefix="sdk.memory.css")) vector_api = Vectors.of("css", vector_store_config) # 检索 query = "杜甫"
sdk.embedding.css.iam.password= sdk.embedding.css.iam.project= ## CSS 向量库 sdk.memory.css.url= sdk.memory.css.user= sdk.memory.css.password= 工程实现。
Agent在实际生产应用中往往涉及到的工具数量较多,如果把所用的工具全部添加至Agent会产生如下问题: 占用大量输入token。 和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具,再交给Agent去处理,示例如下:
用户认证信息就是创建集群时设置的用户/密码。 华为云CSS(集成Embedding) 否 集群host信息。 用户认证信息。 云搜索服务CSS: https://support.huaweicloud.com/css/index.html 参考CSS服务“快速入门”章节创建机器后,在集群信息中获取hosts信息。
Agent在实际生产应用中往往涉及到的工具数量较多,如果把所用的工具全部添加至Agent会产生如下问题: 占用大量输入token。 和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具,再交给Agent去处理。
sdk.embedding.css.iam.password= sdk.embedding.css.iam.project= ## CSS 向量库 sdk.memory.css.url= sdk.memory.css.user= sdk.memory.css.password= 工程实现。
embedding.css.iam.url= # sdk.embedding.css.iam.domain= # sdk.embedding.css.iam.user= # sdk.embedding.css.iam.password= # sdk.embedding.css.iam.project=
Vector cssVector = Vectors.of(Vectors.CSS, VectorStoreConfig.builder() .embedding(Embeddings.of(Embeddings.CSS))
Vector cssVector = Vectors.of(Vectors.CSS, VectorStoreConfig.builder() .embedding(Embeddings.of(Embeddings.CSS))
json解析报错 服务端返回的数据格式不符合json格式,导致sdk侧解析json数据报错。 服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端返回的数据是否和服务SDK设计的结构、字段一致。
理解底层任务 需要站在模型的角度理解相关任务的真实底层任务,并清晰描述任务要求。 例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
print(cache_value_after.answer) # 校验,相似 # 用于检查缓存中的数据是否与查询的数据语义相似,如果相似,就返回缓存中的结果对象。这个操作需要使用向量和相似度的计算,以及设置的阈值来判断 # 例如,查询“缓存存在?”这个问题和“test-semantic-ca
少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的第一个句子:xxx/第一段落:xxx。请根据以上的句子/段落,续写为一段不少于xx个字的文本。”,再将回答设置为符合要求的段落。
整回答的语调和内容,更贴近用户的实际需求。这种智能化、个性化的服务体验不仅减少了转人工的频率,还提升了用户满意度。 创意营销 在创意营销领域,企业常常需要投入大量的时间和资源来撰写吸引人的营销文案。然而,传统的人工撰写方式不仅效率低下,还受到写手个人素质的影响。盘古大模型的应用为这一问题提供了创新的解决方案。