检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建训练作业 功能介绍 创建一个训练作业。 该接口为异步接口,作业状态请通过查询训练作业列表和查询训练作业版本详情接口获取。 URI POST /v1/{project_id}/training-jobs 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id
使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公共组件,可用于访问OBS服务,和具体的AI引擎解耦,在ModelArts支持的所有AI引擎(TensorFlow、MXNet、PyTorch、MindSpore等)下均可以使用。
使用Msprobe工具分析偏差 观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具
在模型代码推理文件“customize_service.py”中,需要添加一个子类,该子类继承对应模型类型的父类,各模型类型的父类名称和导入语句如表1所示。导入语句所涉及的Python包在ModelArts环境中已配置,用户无需自行安装。 表1 各模型类型的父类名称和导入语句 模型类型 父类 导入语句 TensorFlow
MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上 各GPU上的模型进行前向传播,得到输出 主GPU(逻辑序号为0)收集各GPU的输出,汇总后计算损失 分发损失,各GPU各自反向传播梯度
可以在更改部分数据和标注信息后,进行增量训练。 “mox.run”添加增量训练参数 在完成标注数据或数据集的修改后,您可以在“mox.run”中,修改“log_dir”参数,并新增“checkpoint_path”参数。其中“log_dir”参数建议设置为一个新的目录,“chec
在“创建AI应用”页面配置参数。 表1 创建AI应用 参数 是否必填 说明 AI应用英文名称 是 自定义一个易于分辨的AI应用英文名称。 只能以数字、大小字母、下划线组成,且字符长度在3到90之间。 中文名称 是 自定义一个易于分辨的AI应用中文名称。 字符长度在1到30之间。 许可证 否 选择AI应用遵循的许可证。
MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。
MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。
storages=[output_storage] ) 其中ServiceStep节点包含两个输入,一个是模型列表对象,另一个是在线服务对象,此时在运行态通过开关的方式来控制部署/更新服务,如下图所示: 在线服务开关默认关闭,节点走部署服务的流程;如果需
实时推理的部署及使用流程 在创建完模型后,可以将模型部署为一个在线服务。当在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。访问在线服务时,您可以根据您的业务需求,分别确认使用何种认证
til) 可以用一个run脚本把整个流程包起来。run.sh脚本的内容可以参考如下示例: #!/bin/bash ##认证用的AK和SK硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。 ##本示例以AK和SK保存在环境变
当Notebook实例不再需要时,调用删除Notebook实例接口删除实例。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目ID和名称、获取帐号名和帐号ID和获取用户名和用户ID。 操作步骤 调用认证鉴权接口获取用户的Token。 请求消息体: URI格式:POST
够显著提升生成效率。 Eagle训练了一个单层模型,使用input token和基模型推理出的hidden-state作为输入,输出hidden-state。然后根据这个输出的hidden-state使用基模型的原始LLM的分类头来预测下一个词。hidden-state比input
在AI开发过程中,服务升级包括对已部署的模型服务进行优化,以提高性能、增加功能、修复缺陷,并适应新的业务需求。更新模型版本作为服务升级的一部分,涉及用新训练的模型版本替换原来的模型,以提高预测的准确性和模型的环境适应性。 服务升级不可逆。服务升级过程中,原部署服务将正常运行。 升级期间、升级完成后,仍然会按照该服务原计费方式产生费用。
理的耗时。在性能测试任务中,与精度测试不同,并不需要用户指定对应的输入(inDataFile)和输出的标杆数据(benchmarkDataFile),benchmark工具会随机生成一个输入进行推理,并统计推理时间。执行的示例命令行如下。 # shell benchmark --modelFile=resnet50
创建Workflow服务部署节点 功能介绍 通过对ModelArts服务管理能力的封装,实现Workflow新增服务和更新服务的能力。主要应用场景如下: 将模型部署为一个Web Service。 更新已有服务,支持灰度更新等能力。 属性总览 您可以使用ServiceStep来构建服务
创建Notebook实例 功能介绍 创建Notebook实例,可以根据您指定的实例规格,不同AI引擎镜像,存储等相关参数,为您创建一个Notebook,您可以通过网页和SSH客户端访问Notebook实例。 该接口为异步操作,创建Notebook实例的状态请通过查询Notebook实例详情接口获取。
模拟退火算法(Anneal) 贝叶斯优化(SMAC) 贝叶斯优化假设超参和目标函数存在一个函数关系。基于已搜索超参的评估值,通过高斯过程回归来估计其他搜索点处目标函数值的均值和方差。根据均值和方差构造采集函数(Acquisition Function),下一个搜索点为采集函数的极大值点。相比网格搜索,贝叶
过程。对于Qwen-7B和Qwen-72B,操作过程与Qwen-14B相同,只需修改对应参数即可。 Step1 LoRA微调数据处理 训练前需要对数据集进行预处理,转化为.bin和.idx格式文件,以满足训练要求。 LoRA微调训练与SFT微调使用同一个数据集,如果已经在SFT微