检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--prefill:收集prefill过程的数据。 --decode:收集decode过程的数据。 --with-stack:记录调用堆栈。 --with-modules:记录模块层级。 --record-shapes:记录input shape和input type。 --profile-memory:记录内存使用。
er # 昇腾量化使用的算子模块 ├── autosmoothquant_ascend # 量化代码 ├── build.sh # 安装量化模块的脚本 ├──AutoAWQ
ts之前先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。 图1 ModelArts与OBS交互示意 表1 ModelArts各模块与OBS的关系 功能 子任务 ModelArts与OBS的关系 Standard自动学习Standard Workflow 数据标注 Mo
统一镜像:适用创建Notebook/训练作业/模型,后续新上线的镜像都为统一镜像。对应章节ModelArts统一镜像列表。 各模块独有的镜像:仅适用单个模块(例如训练的预置镜像只能用于训练),此类镜像为ModelArts早期的镜像,后续会陆续下线。对应章节Notebook专属预置镜
├── evaluator.py # 数据集数据预处理方法集 ├── model.py # 发送请求的模块,在这里修改请求响应。目前支持vllm.openai,atb的tgi模板 ├── ...
Spark作业、OBS数据复制等,具体参见ModelArts CLI命令参考。 ModelArts Notebook内置MoXing Framework模块,ModelArts mox.file提供了一套更为方便地访问OBS的API,允许用户通过一系列模仿操作本地文件系统的API来操作OBS文
er # 昇腾量化使用的算子模块 ├── autosmoothquant_ascend # 量化代码 ├── build.sh # 安装量化模块的脚本 ├──AutoAWQ
物体检测任务,需一张一张确认。确保所有图片已完成确认,然后执行下一步操作。 图10 确认智能标注结果 数据发布 ModelArts训练管理模块支持通过ModelArts数据集或者OBS目录中的文件创建训练作业。如果选择通过数据集作为训练作业的数据源,则需要指定数据集及特定的版本。
首次下载镜像的时间(25G)。 8分钟 资源调度 点创建训练任务开始到变成运行中的时间(资源充足、镜像已缓存)。 20秒 训练列表页打开 已有50条训练作业,单击训练模块后的时间。 6秒 日志加载 作业运行中,已经输出1兆的日志文本,单击训练详情页面需要多久加载出日志。 2.5秒 训练详情页 作业运行中,没
├── evaluator.py # 数据集数据预处理方法集 ├── model.py # 发送请求的模块,在这里修改请求响应。目前支持vllm.openai,atb的tgi模板 ├── eval_test.py # 启动脚本,建立线程池发送请求,并汇总结果
首次下载镜像的时间(25G)。 8分钟 资源调度 点创建训练作业开始到变成运行中的时间(资源充足、镜像已缓存)。 20秒 训练列表页打开 已有50条训练作业,单击训练模块后的时间。 6秒 日志加载 作业运行中,已经输出1兆的日志文本,单击训练详情页面需要多久加载出日志。 2.5秒 训练详情页 作业运行中,没
import os ENV_NAME=os.getenv('ENV_NAME') # 启动训练作业:使用user_command(shell命令)方式启动训练作业 # 注意:训练启动默认的工作路径为"/home/ma-user/modelarts/user-job-dir",而代码上传路径为"
启超参搜索功能。 图2 开启超参搜索功能 开启超参搜索功能后,用户可以设置搜索指标、搜索算法和搜索算法参数。三个参数显示的支持值与算法管理模块的超参设置对应。 完成超参搜索作业的创建后,训练作业需要运行一段时间。 查看超参搜索作业详情 训练作业运行结束后,可以查看自动超参搜索结果判断此训练作业是否满意。
er # 昇腾量化使用的算子模块 ├── autosmoothquant_ascend # 量化代码 ├── build.sh # 安装量化模块的脚本 ├──AutoAWQ
er # 昇腾量化使用的算子模块 ├── autosmoothquant # 量化代码 ├── build.sh # 安装量化模块的脚本 ├──awq
2u的Notebook中,部署本地Predictor,其运行环境就是cpu.2u。 部署在线服务Predictor,即将存储在OBS中的模型文件部署到线上服务管理模块提供的容器中运行,其环境规格(如CPU规格,GPU规格)由表3 predictor configs结构决定。 部署在线服务Predicto
-2-13b-chat-hf 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。 MODEL_NAME llama2-13b
/home/ma-user/ws/model/llama2-70B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。 MODEL_NAME llama2-70b
/home/ma-user/ws/model/llama2-70B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。 MODEL_NAME llama2-70b
配置模型结构的超参主要有num-layer、hidden-size、seq-length等。 FA配置 超参数为use-flash-attn,决定训练过程中的Attention模块是否使用融合flash attention算子(性能较优)或者使用小算子。 训练脚本 由算法迁移人员排查迁移后的NPU脚本是否存在问题,可以通过Beyond