检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
from_pretrained(model_id) gptq_config = GPTQConfig(bits=8, dataset="c4", tokenizer=tokenizer, group_size=-1, damp_percent=0.01, desc_act=False
from_pretrained(model_id) gptq_config = GPTQConfig(bits=8, dataset="c4", tokenizer=tokenizer, group_size=-1, damp_percent=0.01, desc_act=False
访问,这样可使得学生可独立完成在ModelArts上的实验。 企业场景:管理者可创建用于生产任务的工作空间并限制仅让运维人员使用,用于日常调试的工作空间并限制仅让开发人员使用。通过这种方式让不同的企业角色只能在指定工作空间下使用资源。 前提条件 已开通工作空间白名单,并配置了Mo
from_pretrained(model_id) gptq_config = GPTQConfig(bits=8, dataset="c4", tokenizer=tokenizer, group_size=-1, damp_percent=0.01, desc_act=False
from_pretrained(model_id) gptq_config = GPTQConfig(bits=8, dataset="c4", tokenizer=tokenizer, group_size=-1, damp_percent=0.01, desc_act=False
from_pretrained(model_id) gptq_config = GPTQConfig(bits=8, dataset="c4", tokenizer=tokenizer, group_size=-1, damp_percent=0.01, desc_act=False
a_checked":true} { "source": "obs://hard_example_path/Data/be462ea9c5abc09f_checked.jpg", "property": { "@modelarts:data_checked": true
task timeout. The %s-minute limit is over. imagePacker构建镜像有超时时间限制,请精简代码,提高编译效率。FAQ 正常 模型描述已更新。 Model description updated. - 正常 模型运行时依赖未更新。 Model
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} Step3 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.908-xxx.zip和算子包AscendCloud-OPP-6.3.908-xxx
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.909-xxx.zip和算子包AscendCloud-OPP-6.3.909-xxx
“-t” 指定了新的镜像地址,包括{局点信息}/{组织名称}/{镜像名称}:{版本名称},请根据实际填写。建议使用完整的swr地址,因为后续的调试和注册需要使用。 “-f ”指定了Dockerfile的文件名,根据实际填写。 最后的“ . ”指定了构建的上下文是当前目录,根据实际填写。
AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾分类,让您不用编写代码也可以实现生活垃圾分类。 本案例只适用于新版自动学习功能。 步骤一:准备工作 注册华为账号并开通华为云、实名认证 注册华为账号并开通华为云
AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾分类,让您不用编写代码也可以实现生活垃圾分类。 本案例只适用于新版自动学习功能。 步骤一:准备工作 注册华为账号并开通华为云、实名认证 注册华为账号并开通华为云
池均不支持设置训练作业优先级。 仅支持PyTorch和MindSpore框架的分布式训练和调测,如果MindSpore要进行多机分布式训练调试,则每台机器上都必须有8张卡。 使用自定义镜像创建训练作业时,镜像大小推荐15GB以内,最大不要超过资源池的容器引擎空间大小的一半。镜像过
rk_dir}:代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统。work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_work_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 容器不能挂载到/home/ma-us
Cloud Shell 允许用户使用ModelArts控制台提供的CloudShell登录运行中在线服务实例容器,详情请见使用CloudShell调试在线服务实例容器。 修改服务个性化配置 服务个性化配置规则由配置条件、访问版本、自定义运行参数(包括配置项名称和配置项值)组成。 您可以为
方式一:通过stable diffusion的pytorch模型获取模型shape。 方式二:通过查看ModelArts-Ascend代码仓库,根据每个模型的configs文件获取已知的shape大小。 下文主要介绍方式1如何通过stable diffusion的pytorch模型获取模型shape。
_1.7.0-cann_5.1.0-py_3.7-euler_2.8.3-aarch64-d910-20220715093657-9446c6a ARG CANN=Ascend-cann-toolkit_5.1.RC2_linux-aarch64.run # Set proxy
/home/ma-user/work/envs/user_conda/sfs-tar-env tar -zxvf sfs-clone-env.tar.gz -C /home/ma-user/work/envs/user_conda/sfs-tar-env 查看现有的conda虚拟环境。 # shell
"source": "s3://path/to/image1.jpg", "id": "16d196c19bf61994d7deccafa435398c", "sample-type": 0 } “source”、“usage”、“annotation”等参