检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
标注数据 由于模型训练过程需要大量有标签的数据,如果开发应用时,上传的训练数据集是未标注的,需要对数据集中的数据进行标注。 针对文本分类场景,是对文本的内容按照标签进行分类处理,标签名是由中文、大小写字母、数字、中划线或下划线组成,且不超过32位的字符串。 进入数据标注页面 在“
本章节提供一个身份证样例,帮助您快速熟悉使用文字识别套件中的通用单模板工作流开发应用的过程。通过上传模板图片、框选参照字段和识别区,自动训练并生成文字识别模型,并将生成的模型部署为在线服务。部署完成后,用户可通过在线服务识别身份证模板中的文字。 首先,请仔细阅读准备工作罗列的要
文字识别套件 文字识别套件基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字识别服务,实现多种版式图像的文字信息结构化提取。 文字识别套件当前提供了单模板工作流和多模板工作流,自主构建文字识别模板,识别模板图片中的文字,提供高精度的文字识别模型,保证结构化信息提取精度。
图片最大边不大于4096px,最小边不小于100px,且大小不超过4M。 训练分类器的数据集要求将图片放在一个目录里,并压缩成zip文件,文件大小不应大于10M。 自然语言处理套件 自然语言处理套件使用开发应用时,需要上传文本数据用于模型训练。 数据集要求如表2所示。 表2 自然语言处理套件数据集要求
在使用通用图像分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计图像分类标签 首先使用的数据需要考虑好分类的标签类型,即希望识别出图片中的一种结果。例如对天气现象图片进行分类时,标签可以以“snow”(雪)、“rainy”(雨)等作为分类的类别。 数据集要求 文
新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 由于模型训练过程需要有标签的数据,如果您上传未标注数据,需要手动标注数据。 选择数据 训练模型 选择训练数据后,选择训练模型和车辆场景,即可开始训练车牌检测模型,并查看训练的模型准确率和误差的变化。 训练模型 评估模型
刹车盘识别工作流 工作流介绍 准备数据 选择数据 训练模型 评估模型 部署服务 父主题: 视觉套件
无监督车牌检测工作流 工作流介绍 准备数据 选择数据 训练模型 评估模型 部署服务 父主题: 视觉套件
入HiLens Studio自动创建技能,进一步调试技能。 前提条件 已在ModelArts Pro控制台选择“HiLens安全帽检测”可训练模板新建技能,并评估模型,详情请见评估模型。 由于部署服务涉及ModelArts功能,需消耗资源,要确保账户未欠费。 安装技能至设备,需要
应用详情 查看应用开发配置 在“应用详情”页,默认进入“应用开发”页签,您可以查看应用开发过程中各个步骤的配置信息,包括“数据选择”、“模型训练”、“模型评估”、“服务部署”。 您也可以在“应用开发”页签下,重新编辑应用开发的配置信息,并单击左上角版本号右侧的“更新版本”,将当前的应用设置成新的版本。
在商品识别场景下,如果上传的数据含有未标注数据,您需要创建SKU,即商品各类单品的图片,方便后续针对数据集中的数据进行自动标注。 前提条件 新建训练数据需要获取访问OBS权限,在未进行委托授权之前,无法使用此功能。您需要提前获得OBS授权,详情请见配置访问授权。 需要提前准备好SKU数
不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。
户高效地构建行业、领域的高精度文本处理模型,可应用于政府、金融、法律等行业。 自然语言处理套件提供了预置工作流,覆盖多种场景,支持自主上传训练数据,自主构建和升级高精度识别模型。用户自定义模型精度高,识别速度快。 通用文本分类工作流 多语种文本分类工作流 通用实体抽取工作流 通用文本分类工作流
准备数据 在使用无监督车牌检测工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计车牌标签 首先需要考虑好车牌的标签类型,即希望识别出图片中车牌的一种结果。例如“plate”。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量
通用图像分类工作流 工作流介绍 新建应用 准备数据 选择数据 训练模型 评估模型 部署服务 父主题: 视觉套件
零售商品识别工作流 工作流介绍 准备数据 选择数据 创建SKU 自动标注数据 训练模型 评估模型 部署服务 父主题: 视觉套件
通用实体抽取工作流 工作流介绍 准备数据 选择数据 训练模型 评估模型 部署服务 父主题: 自然语言处理套件
、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的商品标签准备图片数据。每个商品标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个商品标签准备200个以上的数据。