检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查询训练作业日志 功能介绍 按行来查询训练作业日志详细信息。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions/{version_id}/aom-log 参数说明如表1所示。 表1 路径参数 参数 是否必选 参数类型
conv2d/weights. 通过以下方式控制需要训练的参数列表。其中,“trainable_include_patterns”为需要训练的参数列表,“trainable_exclude_patterns”为不需要训练的参数列表。 --trainable_exclude_patterns:
训练作业调测 使用SDK调测单机训练作业 使用SDK调测多机分布式训练作业 父主题: 训练作业
创建训练作业 功能介绍 创建一个训练作业。 该接口为异步接口,作业状态请通过查询训练作业列表和查询训练作业版本详情接口获取。 URI POST /v1/{project_id}/training-jobs 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id
AIGC工具tailor使用指导 tailor简介 tailor是AIGC场景下用于模型转换(onnx到mindir)和性能分析的辅助工具,当前支持以下功能。 表1 功能总览 功能大类 具体功能 模型转换 固定shape转模型 动态shape传入指定档位转模型 支持fp32 支持AOE优化
7-ubuntu_1804-x86_64 构建自定义训练镜像 当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。镜像制作流程如图1所示。 图1 训练作业的自定义镜像制作流程 场景一:预置镜像满足ModelArts训练平台约束,但不满足代码依赖的要求,需要额外安装软件包。
node_count Integer 训练作业选择的资源副本数。 最小值:1 pool_id String 训练作业选择的资源池ID。 flavor_detail flavor_detail object 训练作业、算法的规格信息。 表45 flavor_detail 参数 参数类型 描述 flavor_type
String 训练作业ID。获取方法请参见查询训练作业列表。 task_id 是 String 训练作业的任务名称。可从训练作业详情中的status.tasks字段中获取。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id
训练作业性能问题 训练作业性能降低 父主题: 训练作业
旧版训练迁移至新版训练需要注意哪些问题? 新版训练和旧版训练的差异主要体现在以下3点: 新旧版创建训练作业方式差异 新旧版训练代码适配的差异 新旧版训练预置引擎差异 新旧版创建训练作业方式差异 旧版训练支持使用“算法管理”(包含已保存的算法和订阅的算法)、“常用框架”、“自定义”(即自定义镜像)方式创建训练作业。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
训练作业性能降低 问题现象 使用ModelArts平台训练算法训练耗时增加。 原因分析 可能存在如下原因: 平台上的代码经过修改优化、训练参数有过变更。 训练的GPU硬件工作出现异常。 处理方法 请您对作业代码进行排查分析,确认是否对训练代码和参数进行过修改。 检查资源分配情况(
tputs/train_url_0" train_url = args.train_url # 判断输出路径中是否有模型文件。如果无文件则默认从头训练,如果有模型文件,则加载epoch值最大的ckpt文件当做预训练模型。 if os.listdir(train_url):
外网访问限制 日志提示“ Network is unreachable” 运行训练作业时提示URL连接超时 父主题: 训练作业
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 训练前需要修改数据集路径、模型路径。数据集路径格式为/datasets/pokemon-dataset/image_0
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中,具体参考代码上传至OBS和使用Notebook将OBS数据导入SFS Turbo。 Step1 在Notebook中修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b
Integer 训练作业worker的个数。 data_url String 训练作业的数据集。 train_url String 训练作业输出文件OBS路径。 log_url String 训练作业的日志OBS输出路径URL,默认为空。如:“/usr/train/”。 dataset_version_id
删除训练作业版本 功能介绍 删除训练作业一个版本。 此接口为异步接口,作业状态请通过查询训练作业列表和查询训练作业版本详情接口获取。 URI DELETE /v1/{project_id}/training-jobs/{job_id}/versions/{version_id} 参数说明如表1所示。
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae