检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
大模型微调训练类问题 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码
指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通过横向或纵向评估评测集的方式来验证模型效果。 父主题: 大模型微调训练类问题
3,支持1个训练单元训练及1个推理单元部署。 Pangu-AI4S-Weather_24h-20241030 此版本在Studio上首次发布,用于天气基础要素预测,时间分辨率为24小时,支持预训练、微调、在线推理、能力调测特性,基于Snt9B3,支持1个训练单元训练及1个推理单元部署。
Studio大模型开发平台为用户提供了丰富的训练工具与灵活的配置选项。用户可以根据实际需求选择合适的模型架构,并结合不同的训练数据进行精细化训练。平台支持分布式训练,能够处理大规模数据集,从而帮助用户快速提升模型性能。 模型压缩:在模型部署前,进行模型压缩是提升推理性能的关键步骤。通过压缩模型,能够有效减少推理过程
Studio大模型开发平台,支持的数据类型包括文本、图片、视频、气象、预测数据以及用户自定义的其他类型数据。平台提供灵活的数据接入方式,确保不同业务场景下的数据获取需求得到满足。 数据加工:平台提供强大的数据加工功能,涵盖数据清洗、过滤等操作,确保原始数据满足业务需求和模型训练的要求。针对
扩写要保留以上内容全部信息,结合观众需求突出商品特点3.在结尾引导观众行动。要求口语化。需要300字。", "target": …} 问题三:存在重复数据。 删除重复数据。 略 略 训练模型 自监督训练: 不涉及 有监督微调: 本场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2
从基模型训练出行业大模型 打造短视频营销文案创作助手 打造政务智能问答助手 基于NL2JSON助力金融精细化运营
别过滤不可用的低质量的数据。 训练模型 自监督训练: 不涉及 有监督微调: 该场景采用下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 问答模型的微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 4 训练轮数(epoch) 3 学习率(learning_rate)
判断数据中的JSON参数是否与Query中的参数对应上。 训练模型 自监督训练: 不涉及 有监督微调: 该场景采用了下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表1 微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 8 训练轮数(epoch) 6 学习率(learning_rate)
盘古NLP大模型是业界首个超千亿参数的中文预训练大模型,结合了大数据预训练和多源知识,借助持续学习不断吸收海量文本数据,持续提升模型性能。除了实现行业知识检索、文案生成、阅读理解等基础功能外,盘古NLP大模型还具备模型调用等高级特性,可在智能客服、创意营销等多个典型场景中,提供强大的AI技术支持。 ModelArts
这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题
推理参数(解码参数)是一组用于控制模型生成预测结果的参数,其可以用于控制模型生成结果的样式,如长度、随机性、创造性、多样性、准确性和丰富度等等。 当前,平台支持的推理参数包括:温度、核采样以及话题重复度控制,如下提供了这些推理参数的建议值和说明,供您参考: 表1 推理参数的建议和说明 推理参数
这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Pr
Agent开发平台概述 Agent开发平台简介 Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建
通过这些功能,平台不仅降低了标注成本,还为用户提供了灵活的定制化服务,满足不同业务场景的标注需求,确保为后续模型训练和优化提供高质量的数据支持。 数据标注意义 数据标注在数据工程中的作用是不可忽视的。它不仅是模型训练的基础,还直接影响到训练结果的准确性与有效性。通过标注,平台帮助用户提
Studio大模型开发平台支持将文本类、图片类数据集发布为三种格式: 默认格式:适用于广泛的数据使用场景,满足大多数模型训练的标准需求。 盘古格式:专为盘古大模型训练设计的格式,确保数据集在盘古模型训练中的兼容性和一致性。 自定义格式:适用于文本类、图片类数据集,用户可以根据需求自定义数据格
训练智能客服系统大模型需考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案
几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。
关于模型支持的训练数据量要求,例如NLP大模型,请参考《用户指南》“开发盘古NLP大模型 > 训练NLP大模型 > NLP大模型训练流程与选择建议”。 关于平台接入的数据格式要求,请参考《用户指南》“使用数据工程准备与处理数据集 > 数据集格式要求”。 平台上单个用户最多可创建和管理2000个模型实例。
和部署方式。平台配备数据工程、模型开发、应用开发三大工具链,帮助开发者充分利用盘古大模型的功能。通过该平台,企业可根据需求选择合适的盘古NLP大模型、科学计算大模型等服务,便捷地构建自己的模型和应用 数据工程工具链:数据是大模型训练的核心基础。数据工程工具链作为平台的重要组成部分