检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
7-aarch64-snt3p 表3 mindspore_2.2.12-cann_7.0.1.1-py_3.9-euler_2.10.7-aarch64-snt3p AI引擎框架 URL mindspore 2.2.12 + mindspore-lite 2.2.12 + Ascend CANN Toolkit
RUN_TYPE pretrain、sft、lora 数据预处理区分: 预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/llm_train/AscendS
上传自定义数据到指定目录 将下载的原始数据存放在{work_dir}/llm_train/LLaMAFactory/LLaMA-Factory/data目录下。具体步骤如下: 进入到/home/ma-user/ws/llm_train/LLaMAFactory/LLaMA-Factory/data目录下。
e-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 Step2 权重格式离线转换(可选) 在GPU上AutoAW
https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val.jsonl.zst。 --scale-output:量化系数保存路径。 --scale-input:量化系数输入路径,如果之前
进入代码目录/home/ma-user/ws/xxx-Ascend/llm_train/AscendSpeed下执行启动脚本,先修改以下命令中的参数,再复制执行。 #非必填参数,有默认值 MBS=4 \ GBS=64 \ TP=8 \ PP=1 \ TRAIN_ITERS=200 \ WORK_DIR=/home/ma-user/ws
-v ${work_dir}:${container_work_dir} \ --name ${container_name} \ $image_name \ /bin/bash 参数说明: --name ${container_name} 容器名称,进入容器
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 ChatGLMv3-6B 在训练开始前,针对ChatGLMv3-6B模型中的
e-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 步骤二 权重格式离线转换(可选) 在GPU上AutoAWQ量
调权重转换。 Step1 修改训练超参配置 SFT全参微调脚本glm3_base.sh,存放在Ascenxxx-Ascend/llm_train/AscendSpeed/scripts/glm3目录下。训练前,可以根据实际需要修改超参配置。 微调任务配置,操作同预训练配置类似,不
myhuaweicloud.com/aip/tensorflow_2_6:tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04-x86_64-20220524162601-50d6a18 表2 PyTorch AI引擎版本 支持的运行环境 镜像名称
e-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 Step2 权重格式转换 AutoAWQ量化完成后,使用in
https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val.jsonl.zst。 --scale-output:量化系数保存路径。 --scale-input:量化系数输入路径,如果之前
https://huggingface.co/datasets/mit-han-lab/pile-val-backup/resolve/main/val.jsonl.zst。 --scale-output:量化系数保存路径。 --scale-input:量化系数输入路径,若之前已
号进行排序,端口之间用`,`分隔开作为该环境变量的输入。 USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下: --host:服务部署的IP
号进行排序,端口之间用`,`分隔开作为该环境变量的输入。 USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下: --host:服务部署的IP
use_exllama=False) 加载要量化的模型,并将gptq_config传递给from_pretrained()方法。 quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quanti
附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr
上传自定义数据到指定目录 将下载的原始数据存放在{work_dir}/llm_train/LLaMAFactory/LLaMA-Factory/data目录下。具体步骤如下: 进入到/home/ma-user/ws/llm_train/LLaMAFactory/LLaMA-Factory/data目录下。