检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.910)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.910)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.911)
训练作业进程异常退出 问题现象 训练作业运行失败,日志中出现如下类似报错: [Modelarts Service Log]Training end with return code: 137 原因分析 日志显示训练进程的退出码为137。
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 如果已完成数据集预处理,则直接执行预训练任务。
当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 如果已完成数据集预处理,则直接执行预训练任务。
训练任务 执行训练任务(推荐) 执行训练任务(历史版本) 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.912)
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.911)
假设您的自定义镜像中的“conda”安装于“/home/ma-user/anaconda3”目录“conda env”为“python-3.7.10”,训练脚本位于“/home/ma-user/modelarts/user-job-dir/code/train.py”。
需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。
训练作业的监控内存指标持续升高直至作业失败 问题现象 训练作业的“状态”为“运行失败”。 原因分析 训练作业的监控内存指标持续升高,导致最后训练作业失败。 处理步骤 查询训练作业的日志和监控信息,是否存在明确的OOM报错信息。 是,训练作业的日志里存在OOM报错,执行2。
RUN_TYPE pretrain 表示训练类型。可选择值:[pretrain, sft, lora]。
NPU训练指导(6.3.909)
训练tokenizer文件说明 在训练开始前,有些模型需要对模型的tokenizer文件,或者模型的配置文件进行修改,具体的修改如下: Qwen-VL 修改文件modeling_qwen.py: # 将36 37 两行注释部分 36 SUPPORT_BF16 = SUPPORT_CUDA
多机启动 多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendFactory 下执行启动脚本。
num_train_epochs 5 表示训练轮次,根据实际需要修改。一个Epoch是将所有训练样本训练一次的过程。 train-iters 10 非必填。表示训练step迭代次数,有默认值 seed 1234 随机种子数。每次数据采样时,保持一致。
代码目录选择:OBS桶路径下的mllm_train/train/<commit_id>代码目录。
当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。
当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<TRAIN_ITERS时,生成模型会每经过SAVE_INTERVAL次,保存一次模型版本。