检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
示例:创建DDP分布式训练(PyTorch+NPU) 本文介绍了使用训练作业的自定义镜像+自定义启动命令来启动PyTorch DDP on Ascend加速卡训练。 前提条件 需要有Ascend加速卡资源池。 创建训练作业 本案例创建训练作业时,需要配置如下参数。 表1 创建训练作业的配置说明
eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的
训练模型。如果未生成model文件夹或者训练模型,可能是训练输入数据不完整导致,请检查训练数据上传是否完整,并重新训练。 图4 训练输出路径 Step5 推理部署 模型训练完成后,可以创建模型,将模型部署为在线服务。 在ModelArts管理控制台,单击左侧导航栏中的“模型管理(
创建模型训练工程 创建工程 编辑训练代码(简易编辑器) 编辑训练代码(WebIDE) 模型训练 MindSpore样例 父主题: 模型训练
模型训练 导入SDK 选择数据 特征画像 模型选择 训练模型 测试模型 开发推理 归档模型 父主题: KPI异常检测学件服务
创建生产训练作业 模型训练是一个不断迭代和优化模型权重的过程。ModelArts的训练模块支持创建训练作业、查看训练情况以及管理训练版本。通过模型训练试验模型结构、数据和超参的各种组合,便于找到最佳的模型结构和权重。 创建生产环境的训练作业有2种方式: 通过ModelArts S
训练作业重调度 当训练作业发生故障恢复时(例如进程级恢复、POD级重调度、JOB级重调度等),作业详情页面中会出现“故障恢复详情”页签,里面记录了训练作业的启停情况。 在ModelArts管理控制台的左侧导航栏中选择“模型训练 > 训练作业”。 在训练作业列表中,单击作业名称进入训练作业详情页面。
文生视频模型训练推理 CogVideoX1.5 5b模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.912) CogVideoX模型基于Lite Server适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于Lite
通过torch.distributed.run命令启动 创建训练作业 方式一:使用PyTorch预置框架功能,通过mp.spawn命令启动训练作业。 创建训练作业的关键参数如表1所示。 表1 创建训练作业(预置框架) 参数名称 说明 创建方式 选择“自定义算法”。 启动方式 选择“
eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的
训练精度测试 流程图 训练精度测试流程图如下图所示: 图1 训练精度测试流程图 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,按自己实际情况。 benchmark-cli train <cfgs_yaml_file> <model_name> <run_type>
训练精度测试 流程图 训练精度测试流程图如下图所示: 图1 训练精度测试流程图 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,按自己实际情况。 benchmark-cli train <cfgs_yaml_file> <model_name> <run_type>
在ModelArts中训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: Standard模型训练
使用reload ckpt恢复中断的训练 在容错机制下,如果因为硬件问题导致训练作业重启,用户可以在代码中读取预训练模型,恢复至重启前的训练状态。用户需要在代码里加上reload ckpt的代码,使能读取训练中断前保存的预训练模型。具体请参见断点续训练。 父主题: 模型训练高可靠性
如何将在ModelArts中训练好的模型下载或迁移到其他账号? 通过训练作业训练好的模型可以下载,然后将下载的模型上传存储至其他账号对应区域的OBS中。 获取模型下载路径 登录ModelArts管理控制台,在左侧导航栏中选择“模型训练 > 训练作业”,进入“训练作业”列表。 在训练作业列表中,单击目标训练作业名称,查看该作业的详情。
数字人模型训练推理 Wav2Lip推理基于Lite Server适配PyTorch NPU推理指导(6.3.907) Wav2Lip训练基于Lite Server适配PyTorch NPU训练指导(6.3.907)
方式搜索日志。 :将当前训练工程加入训练。 :返回到当前训练工程所在的“模型训练”页面。 训练任务:查看训练任务的运行状态。可以查看训练任务的运行日志以及训练报告,删除训练任务。也可以在任务执行过程中单击暂停训练任务。 3 代码目录:包含日志文件夹、模型文件存放文件夹、调试文件、requirements
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.909)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.910)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU训练指导(6.3.906)