内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 2020首届海洋目标智能感知国际挑战赛 冠军方案分享

    )来稳定训练过程。 四,总结展望 非常感谢主办方提供的参赛机会,李秀教授的悉心指导,以及华为NAIE网络人工智能云服务提供的AI模型训练平台。本次比赛不仅提高了我们对目标检测算法的掌握程度,还增加了我们海洋船舶方面的知识。但是,我们的模型仍然存在较

    作者: 就挺突然
    发表时间: 2021-01-12 09:57:22
    2244
    0
  • NAIE模型训练服务演示

    以数据中心PUE优化为例进行模型训练服务和数据中心PUE优化模型生成服务操作演示,使开发者快速熟悉NAIE模型训练服务和数据中心PUE优化模型生成服务。

    播放量  12983
  • 模型训练

    模型训练 模型训练中除了数据和算法外,开发者花了大量时间在模型参数设计上。模型训练的参数直接影响模型的精度以及模型收敛时间,参数的选择极大依赖于开发者的经验,参数选择不当会导致模型精度无法达到预期结果,或者模型训练时间大大增加。 为了降低开发者的专业要求,

  • 完整地模型训练套路

    lr=learning_rate) # 随机梯度下降 # 设置训练网络的一些参数 # 记录训练的次数 total_train_step = 0 # 记录测试的次数 total_test_step = 0 # 训练的轮数 epoch = 10 # 使用tensorboard记录

    作者: yd_237060271
    发表时间: 2022-10-11 12:31:00
    124
    0
  • Notebook HuggingFace模型训练

    作者: 星月菩提
    发表时间: 2021-07-06 03:32:17
    1149
    0
  • modelarts训练模型体验

    三、训练模型 数据和代码准备完成后,您可以创建一个训练作业 例如:下载mindspore源码https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/inceptionv4 填写配置训练参数后,单击“Apply

    作者: xiongwu
    发表时间: 2021-08-26 06:51:42
    925
    0
  • 模型训练

    模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 也可以单击“查看中间结果”查看每一个迭代之后的指标。 模型训练完成后如果指标

  • 训练模型发展历史

    的替代品。在此背景下,OpenAI的 GPT预训练模型被提出。GPT 模型也采用了两阶段,第一阶段利用无监督的预训练语言模型进行预训练,学习神经网络的初始参数,第二阶段通过有监督的微调模式解决下游任务,这是一种半监督的方法,结合了非监督的预训练模型和监督的微调模型,来学习一种通用的表示法。 图 3 GPT的模型结构

    作者: 可爱又积极
    发表时间: 2021-10-22 01:02:05
    1542
    0
  • NAIE模型训练服务演示-数据中心PUE优化

    以数据中心PUE优化为例进行模型训练服务和数据中心PUE优化模型生成服务操作演示,使开发者快速熟悉NAIE模型训练服务和数据中心PUE优化模型生成服务。

    播放量  5130
  • 【CANN训练营】【2022第二季】【新手班】迁移TensorFlow模型到昇腾设备实验复现

    15编写的LeNet网络的minist手写数字识别”的程序; 2、模型迁移,将原代码迁移成能在昇腾AI处理器上进行训练的代码; 3、将迁移后的代码跑在ModelArts平台上。 一、本地跑通基于LeNet网络的minist手写数字识别代码 目前昇腾支持的迁移模型是Tensorflow1.15,所以本地需要在Tensorflow1

    作者: StarTrek
    发表时间: 2022-07-22 13:15:02
    1540
    0
  • Pytorch完整的模型训练套路

    从测试集中获取一批样本数据,并将其输入模型进行前向传播。 计算损失函数或评估指标,用于评估模型在测试集上的性能。 训练和测试过程的记录和输出步骤 使用适当的工具或库记录训练过程中的损失值、准确率、评估指标等。 结束训练步骤 根据训练结束条件、例如达到预定的训练次数或收敛条件,结束训练。可以保存模型参数或整个模型,以便日后部署和使用。

    作者: 北山啦
    发表时间: 2023-11-15 16:04:52
    109
    0
  • 深度学习模型训练流程思考

    代码实现6,7,8中的设计 使用超参优化工具(NNI)寻找最优超参组合 模型初步训练 改进:根据初步训练的效果指标判断是数据集问题还是模型结构或深度问题 数据集问题,想办法进一步清洗补充数据集 模型结构问题,尝试更换或者NNI搜索更优模型模型深度问题,尝试增加backbone的卷积通道层数或者复制增加layers

    作者: lutianfei
    发表时间: 2021-05-31 12:10:43
    1544
    0
  • mindspore_unet模型训练——ascend310推理

    file_format: "AIR" 3、开始训练 bash scripts/run_standalone_train.sh /root/unet/dataset/train/newTrain/ unet_nested_cell_config.yaml 训练结果: 在./unet_

    作者: xiongwu
    发表时间: 2021-08-25 06:39:56
    955
    0
  • 解决:模型训练时loss出现nan

    问题描述 模型训练时loss出现nan 解决方案 采用amp 导致溢出出现nan数据里有nan特定类lossnorm 可能出现sigma=0? 调试

    作者: 野猪佩奇996
    发表时间: 2022-06-23 15:29:42
    208
    0
  • 模型训练(预置算法-新版训练

    模型训练(预置算法-新版训练) 使用AI Gallery的订阅算法实现花卉识别 使用时序预测算法实现访问流量预测 使用强化学习内置环境实现车杆游戏 使用强化学习自定义环境实现贪吃蛇游戏

  • DnCNN模型怎么训练

    数据准备:准备包含干净图像和添加噪声后的训练数据集。 模型构建:定义DnCNN模型的网络结构。 损失函数定义:选择合适的损失函数,通常使用均方误差(MSE)损失。 优化器选择:选择优化算法进行模型参数的优化,如Adam优化器。 模型训练:对DnCNN模型进行训练,并调整参数以最小化损失函数。 模型评估:使用测试集评估训练后的模型性能。

    作者: 皮牙子抓饭
    发表时间: 2024-03-04 09:30:55
    17
    0
  • 大规模模型训练

    大规模模型训练涉及多GPU时的并行、通讯以及模型过大等问题。并行方式对于n个GPU数据并行:不同的GPU输入不同的数据,运行相同的完整的模型模型并行:不同的GPU运行模型的不同部分,比如多层网络的不同层;如果模型能够放进单个GPU的显存中,可以使用数据并行加速。如果模型不能够放

    作者: dailydreamer
    发表时间: 2020-02-29 17:31:29
    6223
    0
  • 网络场景AI模型训练效率实践

    华为解决方案   1.   对华为NAIE训练平台现有任务机制进行拓展,任务可使用Master-Worker机制,即原来的任务变成Master控制消息分发,在其命名空间下创建N个子任务,循环处理数据2.   设计一套简单易用的API,尽量对业务代码无侵入  导入依赖:我们从naie sdk中导入两个装饰器 

    作者: chenjinge
    发表时间: 2020-05-08 16:15:58
    7311
    0
  • mindspore模型训练—混合精度算法

    活中的一大阻碍。    大多数的深度学习模型使用的是32位单精度浮点数(FP32)来进行训练,而混合精度训练的方法中则增加了通过16位浮点数(FP16)进行深度学习模型训练,从而减少了训练深度学习模型所需的内存,同时由于FP16的运算比FP32运算更快,从而也进一步提高了硬件效率。 

    作者: leid_lzu
    发表时间: 2021-11-02 05:16:32
    1891
    0