检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常用概念 合作方、参与方: 空间成员,有权使用空间中的数据,或者将自有数据发布到空间,供其他合作方受限使用。 计算节点 部署在参与方侧,是可信智能计算与合作方侧数据的桥梁,保障数据按照合作方意愿受限使用。 计算节点是管理参与方数据的最小单位。部署计算节点时需要指定空间配置信息。在
外部数据共享 场景描述 准备数据 发布数据集 创建实时隐匿查询作业 执行实时隐匿查询作业 父主题: 实时隐匿查询场景
测试步骤 数据准备 训练型横向联邦作业流程 评估型横向联邦作业流程 父主题: 横向联邦学习场景
TICS服务委托授权 背景信息 为保证正常创建TICS服务,需要先设置服务委托。 前提条件 服务授权需要主账号或者admin用户组中的子账号进行操作。 授权委托需查看IAM委托列表,如果存在名为tics_admin_trust的委托和tics_role_trust的权限,需要先删除。
隐私求交黑名单共享场景 场景描述 准备数据 发布数据集 创建并运行隐私求交作业 查看求交结果 父主题: 使用场景
创建合约 数据拥有方公司A同意数据需求方公司B的数据使用申请后,可以由公司A创建合约,合约是需要双方同意的数据使用证明。 合约内容包括:合约名称、合约描述、数据信息、公司B的访问需求、访问限制和自定义限制。其中数据信息、公司B的访问需求来自于公司B的数据使用申请,合约名称、合约描
纵向联邦建模场景 使用TICS多方安全计算进行联合样本分布统计 使用TICS可信联邦学习进行联邦建模 使用TICS联邦预测进行新数据离线预测 父主题: 使用场景
场景描述 现有企业A和企业B达成了一项数据共享合作协议,企业B允许企业A根据用户id查询企业B的数据,辅助企业A的实时分析业务。而企业A不想暴露给企业B自己查询的用户id,因为查询该用户的信息隐含着“该用户是企业A的客户”的信息,存在用户隐私泄露的风险。 企业A和企业B可以使用T
准备数据 企业A的实时业务不需要准备数据,在发起查询时通过参数传递需要查询的用户id。 表1 企业B用户画像数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 f0-f4 float 用户数据画像特征 bigdata_all.csv id,f0,f1,f2
创建连接器 连接器用来快速连接到用户名下的各类资源服务。 前提条件 计算节点处于运行中,且所在空间信息的“认证状态”为“已认证”。 建议使用者提前了解MapReduce服务(MRS Hive)集群。 “连接器类型”选择MapReduce服务(MRS Hive)时,选择的MRS集群
多方安全计算场景 场景描述 组合架构 可验证代码示例 父主题: 使用场景
横向联邦学习场景 TICS从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述
申请使用数据 数据需求方公司B在自己的计算节点页面上可以查看数据目录,找到数据拥有方公司A创建并发布的数据。 图1 创建数据申请 对数据集单击“申请使用”,在弹窗中填写需要使用的字段和访问需求,保存后可以提交审批,由公司A审核。 访问需求包括: 访问截止时间:设置访问的时间限制,
可信数据交换场景 场景描述 创建数据 申请使用数据 审批数据申请 创建合约 父主题: 使用场景
场景描述 背景信息 本案例以“预测乳腺癌是良性/恶性”的场景为例。假设一部分的乳腺癌患者数据存储在xx医院,另一部分数据存储在某个其他机构,不同机构数据所包含的特征相同。 这种情况下,xx医院想申请使用其他机构的乳腺癌患者数据进行乳腺癌预测模型建模会非常困难。因此可以通过华为TI
实验结果 乳腺癌数据集作业结果 父主题: 横向联邦学习场景
隐私规则防护 使用TICS的隐私规则防护能力确保数据安全。 前提条件 完成数据集发布。 操作步骤 进入多方安全计算的作业执行界面,单击创建。 图1 创建作业 在作业界面中,按照示例一和示例二提供的案例和SQL语句进行作业测试。 图2 作业界面 示例一: 假设有人输入以下代码试图直接查询敏感数据。
发布数据集 企业A和企业B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 以企业A为例,数据集信息如下: 隐私求交场景需要将求交的字段设置为“非敏感”的唯一标识。 父主题: 隐私求交黑名单共享场景
创建实时隐匿查询作业 实时隐匿查询作业需要由数据查询方创建作业,企业A单击“作业管理 > 隐匿查询 > 实时隐匿查询”页面的创建按钮,填写相关信息,例如: 其中“不可区分度”即为实时隐匿查询的安全级别,不可区分度越高,则安全级别越高,但查询的速度会变慢,传输的数据量也会变大。 企
训练型横向联邦作业流程 联邦学习分为横向联邦及纵向联邦。相同行业间,特征一致,数据主体不同,采用横向联邦。不同行业间,数据主体一致,特征不同,采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业