检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
e-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/latest/quantization/auto_awq.html。 步骤二:权重格式离线转换(可选) 在GPU上AutoAWQ量
号进行排序,端口之间用`,`分隔开作为该环境变量的输入。 USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下: --host:服务部署的IP
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
保存ckpt时超时报错 在多节点集群训练完成后,只有部分节点会保存权重,而其他节点会一直在等待通信。当等待时间超过36分钟时,会发生超时的错误。 图1 报错提示 解决方法 1. 需要保证磁盘IO带宽正常,可以在36分钟内将文件保存到磁盘。单个节点内,最大只有60G(实际应该在40
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
工作负载Pod异常 Pod状态为Pending 当Pod状态为“Pending”,事件中出现“实例调度失败”的信息时,可根据具体事件信息确定具体问题原因。具体参考链接为工作负载状态异常定位方法。 通过以下命令打印Pod日志信息。 kubectl describe pod ${pod_name}
128 35 chatglm3-6b 1 64 1 128 36 glm-4-9b 1 32 1 128 37 baichuan2-7b 1 8 1 32 38 baichuan2-13b 2 4 1 4 39 yi-6b 1 64 1 128 40 yi-9b 1 32 1 64
128 35 chatglm3-6b 1 64 1 128 36 glm-4-9b 1 32 1 128 37 baichuan2-7b 1 8 1 32 38 baichuan2-13b 2 4 1 4 39 yi-6b 1 64 1 128 40 yi-9b 1 32 1 64
128 35 chatglm3-6b 1 64 1 128 36 glm-4-9b 1 32 1 128 37 baichuan2-7b 1 8 1 32 38 baichuan2-13b 2 4 1 4 39 yi-6b 1 64 1 128 40 yi-9b 1 32 1 64
Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户有自定义开发的需要,比如查看和编辑代码、数据预处理、权重转换等操作,可通过Notebook环境进行,。并且Notebook环境具有一定的存储空间,可与OBS中的数据相互传递。 创建Notebook 创建开发环境Notebook
在运行finetune_ds.sh 时遇到报错 在运行finetune_ds.sh 时遇到报错 pydantic_core._pydantic_core.ValidationError: 1 validation error for DeepSpeedZeroConfig sta
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。
128 24 chatglm3-6b 1 64 1 128 25 glm-4-9b 1 32 1 128 26 baichuan2-7b 1 8 1 32 27 baichuan2-13b 2 4 1 4 28 yi-6b 1 64 1 128 29 yi-9b 1 32 1 64
128 24 chatglm3-6b 1 64 1 128 25 glm-4-9b 1 32 1 128 26 baichuan2-7b 1 8 1 32 27 baichuan2-13b 2 4 1 4 28 yi-6b 1 64 1 128 29 yi-9b 1 32 1 64
13b中创建文件夹training_data。 利用OBS Browser+工具将步骤1下载的数据集上传至步骤2创建的文件夹目录下。得到OBS下数据集结构: obs://<bucket_name>/training_data |── train-00000-of-0
使用Server-Sent Events协议的方式访问在线服务 背景说明 Server-Sent Events(SSE)是一种服务器向客户端推送数据的技术,它是一种基于HTTP的推送技术,服务器可以向客户端推送事件。这种技术通常用于实现服务器向客户端推送实时数据,例如聊天应用、实时新闻更新等。
在运行finetune_ds.sh 时遇到报错 在运行finetune_ds.sh 时遇到报错 pydantic_core._pydantic_core.ValidationError: 1 validation error for DeepSpeedZeroConfig sta
OBS为例,请参考创建OBS桶,例如桶名:standard-llama2-13b。并在该桶下创建文件夹目录用于后续存储代码使用,例如:training_data。 父主题: 准备工作
4096]). 需要在训练开始前,修改llm_train/AscendFactory/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B 在
loud-LLM/llm_train/AscendSpeed 编辑llm_train/AscendFactoryry中的Dockerfile文件,修改git命令,填写自己的git账户信息。 git config --global user.email "you@example.com"