检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
RUN_TYPE pretrain、sft、lora 数据预处理区分: 预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/llm_train/AscendS
数据预处理区分: 预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/finetune/moss_LossCompare.jsonl
RUN_TYPE pretrain、sft、lora 数据预处理区分: 预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/${用户自定义的数据集路径和名称}
RUN_TYPE pretrain、sft、lora 数据预处理区分: 预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/${用户自定义的数据集路径和名称}
数据预处理区分: 预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/finetune/moss_LossCompare.jsonl
在Notebook中通过镜像保存功能制作自定义镜像用于推理 场景说明 本文详细介绍如何将本地已经制作好的模型包导入ModelArts的开发环境Notebook中进行调试和保存,然后将保存后的镜像部署到推理。本案例仅适用于华为云北京四和上海一站点。 操作流程如下: Step1 在Notebook中复制模型包
命令: 进入到代码目录下{work_dir}/llm_train/LLaMAFactory/ascendcloud_patch/models/falcon2/如: cd /home/ma-user/ws/llm_train/LLaMAFactory/ascendcloud_patch/models/falcon2/
命令: 进入到代码目录下{work_dir}/llm_train/LLaMAFactory/ascendcloud_patch/models/falcon2/如: cd /home/ma-user/ws/llm_train/LLaMAFactory/ascendcloud_patch/models/falcon2/
命令: 进入到代码目录下{work_dir}/llm_train/LLaMAFactory/ascendcloud_patch/models/falcon2/如: cd /home/ma-user/ws/llm_train/LLaMAFactory/ascendcloud_patch/models/falcon2/
/sys/fs/cgroup:/sys/fs/cgroup:ro \ -v ${dir}:${container_work_dir} \ --net=host \ --name ${container_name} \ ${image_id} \ /bin/bash 参数说明: --device=/dev/davinci0,
py ##复制输出结果到OBS目录。 TRAIN_URL=`echo ${DLS_TRAIN_URL} | sed /s/s3/obs/` /opt/utils/obsutil cp –r –f /cache/out ${TRAIN_URL} 把run.sh放到/opt目录,
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢
py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。 python convert_checkpoint.py \ --model_dir
练为例: 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/pretrain/train-00000-of-00001-a09b74b3ef9c3b56.parquet
llama2-70b 预训练为例。 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/pretrain/alpaca.parquet 必须修改。训练时指定的输入数据路径。请根据实际规划修改。
llama2-70b 预训练为例。 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/pretrain/alpaca.parquet 必须修改。训练时指定的输入数据路径。请根据实际规划修改。
128 24 chatglm3-6b 1 64 1 128 25 glm-4-9b 1 32 1 128 26 baichuan2-7b 1 8 1 32 27 baichuan2-13b 2 4 1 4 28 yi-6b 1 64 1 128 29 yi-9b 1 32 1 64
128 24 chatglm3-6b 1 64 1 128 25 glm-4-9b 1 32 1 128 26 baichuan2-7b 1 8 1 32 27 baichuan2-13b 2 4 1 4 28 yi-6b 1 64 1 128 29 yi-9b 1 32 1 64
从OBS目录导入数据到数据集 前提条件 已存在创建完成的数据集。 准备需要导入的数据,具体可参见从OBS目录导入数据规范说明。 需导入的数据,已存储至OBS中。Manifest文件也需要存储至OBS。详细指导请参见创建OBS桶用于ModelArts存储数据。 确保数据存储的OBS