检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
可以参考表1按照实际需求修改。 表1 训练超参配置说明 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/alpaca_gpt4_data.json 必须修改。训练时指定的输入数据路径。请根据实际规划修改。
0_pl_pretrain_13b.sh时,命令如下: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 创
4096]). 需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B 在训
4096]). 需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B 在训
parallel size)=2 PP(pipeline model parallel size)=4 1*节点 & 8*Ascend 16 Baichuan2 baichuan2-13b SEQ_LEN=4096 TP(tensor model parallel size)=8 PP(pipeline
4096]). 需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B 在训
4096]). 需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B 在训
py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。 python convert_checkpoint.py \ --model_dir
\"description\": \"An enumeration.\", \"enum\": [\"leather\", \"chainmail\", \"plate\"], \"type\": \"string\"}, \"Weapon\": {\"title\": \"Weapon\"
clone,请确保环境可以访问公网,详解操作如下: 进入代码包Dockerfile文件同级目录: cd /home/ma-user/ws/llm_train/LLaMAFactory 构建新镜像: docker build -t <镜像名称>:<版本名称> . 如无法访问公网则需配置代理,
/home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/pretrain_hf/ 目录下查看转换后的权重文件。 注意:权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging
/home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/pretrain_hf/ 目录下查看转换后的权重文件。 权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging
/home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/pretrain_hf/ 目录下查看转换后的权重文件。 注意:权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging
/home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/pretrain_hf/ 目录下查看转换后的权重文件。 注意:权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging
/home/ma-user/ws/llm_train/saved_dir_for_output/llama2-13b/saved_models/ 目录下查看转换后的权重文件。 权重转换完成后,需要将例如saved_models/pretrain_hf中的文件与原始Hugging Fa
_w8a8_int8.py中的代码: 1)若本地已有权重,请将MODEL_ID修改为权重路径; MODEL_ID = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct" 2)若量化Deepseek-V2-236B模型,请将num_gpus改为8;
的训练代码AscendCloud-LLM-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 cd ./llm_train/AscendSpeed 编辑llm_train/AscendSpeed中的Dockerfile文件第一行镜像地址,修改为本文档中的基础镜像地址。
练代码AscendCloud-LLM-xxx.zip,并直接进入到llm_train/AscendFactory文件夹下面 cd ./llm_train/AscendFactory 编辑llm_train/AscendFactory中的Dockerfile文件,修改git命令,填写自己的git账户信息。
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 ChatGLMv3-6B 在训练开始前,针对ChatGLMv3-6B模型中的
multi-step 什么是multi-step vLLM的调度和输入准备的CPU开销可能会导致NPU利用率不足,开启multi-step调度可以有效解决这个问题,开启multi-step调度后会在执行一次调度和输入准备后,连续n步运行模型。通过NPU在n步之间连续处理,而无需等