检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
全球范围,纬度90N~-90S,经度0W~360E。 训练集和验证集均推荐使用>1个月的历史数据。 训练数据一般可通过公开数据集获取,例如ERA5。ERA5是由欧洲中期天气预报中心(ECMWF)提供的全球气候的第五代大气再分析数据集,它覆盖从1940年1月至今的时间段,提供每小时的大气、陆地和海洋气候变量的估计值。
A:先生,您家的网络无法连接是吗 A:请问您尝试重新插拔网线吗? B:是的,我试了 B:还是不行 拼接后的微调数据格式示例: {"context": ["xxx号话务员为您服务! 先生您好,有什么可以帮助您的?", "你好,是这样的 我家里上不了网了 网连不上", "先生,您家的网络无法连接是吗
导入数据过程中,为什么无法选中OBS的具体文件进行上传 在数据导入过程中,平台仅支持通过OBS服务导入文件夹类型的数据,而不支持直接导入单个文件。 您需要将文件整理到文件夹中,并选择该文件夹进行上传。 父主题: 大模型使用类问题
应用于开发和优化提示词(Prompt),帮助用户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词,它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交
NLP大模型训练类型选择建议 平台针对NLP大模型提供了两种训练类型,包括预训练和微调,二者区别详见表3。 表3 预训练和微调训练类型区别 训练方式 训练目的 训练数据 模型效果 应用场景举例 预训练 关注通用性:预训练旨在让模型学习广泛的通用知识,建立词汇、句法和语义的基础理解。
命令案例:科技行业公司的平均利润和市值是多少 通过调用大模型,获取更多数据: 1. "请给我科技行业公司的利润平均值和市值平均值。" 2. "科技行业的公司平均利润和市值都是多少?" 3. "我需要知道科技行业公司的平均利润和平均市值。" 4. "能告诉我一下科技行业公司的平均利润和市值是多少吗?"
NLP大模型支持接入的数据集类型 盘古NLP大模型仅支持接入文本类数据集,该数据集格式要求请参见文本类数据集格式要求。 构建NLP大模型所需数据量 使用数据工程构建盘古NLP大模型数据集进行模型训练时,所需数据量见表1。 表1 构建NLP大模型所需数据量 模型规格 训练类型 推荐数据量 最小数据量(数据条数)
管理盘古工作空间成员 如果您需要为企业员工设置不同的访问权限,以实现功能使用权限和资产的权限隔离,可以为不同员工配置相应的角色,以确保资产的安全和管理的高效性。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可以跳过本章节,不影响您使用盘古的其他功能。
Studio大模型开发平台,进入所需空间。 获取调用路径。单击左侧“模型开发 > 模型部署”,选择所需调用的NLP大模型,单击“调用路径”,在“调用路径”弹窗获取调用路径。 图6 获取调用路径 获取项目ID。在页面右上角“我的凭证”,在“API凭证”页面可获取项目ID。 图7 获取项目ID 获取Token。参考《API参考》文档“如何调用REST
角的坐标,width和height是边界框的宽度和高度。 category_id 是 标注类别的ID,对于人体姿态估计,通常为1(表示person)。 id 是 标注的唯一标识符。 categories 是 标注类型信息。 supercategory 是 类别的上级分类,通常为person。
存,避免频繁调用。 如果您的华为云账号已升级为华为账号,将不支持获取账号Token。建议为您自己创建一个IAM用户,获取IAM用户的Token。 获取Token方法: Token可通过调用“获取Token”接口获取,接口调用示例如下: 伪码 POST https://iam.cn-southwest-2
最大TOKEN长度 模型可最大请求的上下文TOKEN数。 架构类型 算法所支持的结构类型,模型选择完成后,会自动适配架构类型。 安全护栏 选择模式 安全护栏保障模型调用安全。若关闭,推理服务可能会有违规风险,建议开启。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则,不可调整。
便捷地构建自己的模型和应用 数据工程工具链:数据是大模型训练的核心基础。数据工程工具链作为平台的重要组成部分,具备数据获取、清洗、配比和管理等功能,确保数据的高质量与一致性。工具链能够高效收集并处理各种格式的数据,满足不同训练任务的需求,并提供强大的数据存储和管理能力,为大模型训练提供坚实的数据支持。
选择 “OBS”表示将输出结果存储在OBS中。 作业配置参数 设置模型部署参数信息,平台已给出默认值。 架构类型 算法所支持的结构类型,模型选择完成后,会自动适配架构类型。 资源配置 实例数 设置部署模型是所需的实例数,单次部署服务时,部署实例个数建议不大于10,否则可能触发限流导致部署失败。
数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、配比和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工
此类大模型因具备更强的泛化能力,能够沉淀行业经验,并更高效、准确地获取信息。 大模型的计量单位token指的是什么 令牌(Token)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。
数据工程使用流程 高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。
失、浪费和管理不善的情况?在社会建设专项资金的使用情况中,应规范操作,加强管理,及时纠正和化解建设过程中的解释、调取和留置问题,严防管理漏洞,保证应用资金的安全性和真实性。同时,应建立完善的监管机制,严格管理,加强监督,加强专项资金使用情况的评估,加强对建设过程的监管和评估,节约
bleu-2:模型生成句子与实际句子在词组层面的匹配度,数值越高,表明模型性能越好。 bleu-3:模型生成结果和实际句子的加权平均精确率,数值越高,表明模型性能越好。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。对于训练异常或失败的任务也可以通过训练
Studio大模型开发平台不仅提供预设的标准,还允许用户根据不同的数据类型和业务需求创建自定义的评估标准,使评估过程更加灵活和精准。 节省时间和成本:通过自动化的数据评估功能,用户能够迅速了解数据的质量问题,减少手动检查的工作量和时间成本,为后续的数据优化和模型训练节省资源。 总的来说,数据评估为用户提