检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 预览提示词效果 单击“查看效果”按钮,输出模型回复结果,用户可以根据预览效果调整提示词的文本和变量。 父主题: 撰写提示词
过拟合。批大小越小,训练速度越慢,但会减少内存消耗,且可能提高泛化能力。因此,批大小需要根据数据集的规模和特点,以及模型的复杂度和性能进行调整。同时,批大小还与学习率相关。学习率是指每次更新参数时,沿着梯度方向移动的步长。一般来说,批大小和学习率成正比。如果批大小增大,学习率也相
数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优 为什么微调后的模型,回答总是在重复某一句或某几句话 为什么微调后的模型,回答中会出现乱码
通过批量替换{{location}}的值,来获得模型回答,提升评测效率。 同时,撰写提示词过程中,可以通过设置模型参数控制模型生成行为,如调整温度、核采样和最大口令限制等。模型参数的设置会影响模型的生成质量和多样性,因此需要根据不同的场景进行选择。提示词的撰写步骤如下: 登录盘古大模型套件平台。
审计 云审计服务(Cloud Trace Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。
过拟合。批大小越小,训练速度越慢,但会减少内存消耗,且可能提高泛化能力。因此,批大小需要根据数据集的规模和特点,以及模型的复杂度和性能进行调整。同时,批大小还与学习率相关。学习率是指每次更新参数时,沿着梯度方向移动的步长。一般来说,批大小和学习率成正比。如果批大小增大,学习率也相
getAction())) { agentSession.setFinalAnswer(currentAction.getObservation()); return true; } return false;
agent_session.final_answer = agent_session.current_action.observation return True return False agent.add_liste
题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 父主题: 典型训练问题和优化策略
够在面对新挑战时迅速调整和优化,提供适应新领域的服务。 通过微调技术,盘古大模型能够在保持原有优势的同时,融入新领域的特征和规律,实现对新任务的快速适应。这种能力极大地扩展了模型的应用范围,使其在更广泛的业务场景中发挥作用,为用户提供更加全面和深入的智能服务。
ask("写一篇五言律诗").getAnswer(); 支持调整的参数解释。 private int maxTokens; // 完成时要生成的令牌的最大数量 private double temperature; // 调整随机抽样的程度,温度值越高,随机性越大 private double
应用开发工具链 能力调测 应用百宝箱 数据工程工具链 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、配比和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自
推理相关概念 表2 训练相关概念说明 概念名 说明 温度系数 温度系数(temperature)控制生成语言模型中生成文本的随机性和创造性,调整模型的softmax输出层中预测词的概率。其值越大,则预测词的概率的方差减小,即很多词被选择的可能性增大,利于文本多样化。 多样性与一致性
n内共享弹性计算、块存储、对象存储、VPC网络、弹性公网IP、镜像等公共服务。Region分为通用Region和专属Region,通用Region指面向公共租户提供通用云服务的Region;专属Region指只承载同一类业务或只面向特定租户提供业务服务的专用Region。 详情请参见区域和可用区。
判断,尽量描述清楚。如果Agent实际执行效果不符合预期,可以调整。 input_desc。工具的入参描述 ,为重要参数,该描述直接影响LLM对入参的提取,尽量描述清楚。如果Agent实际执行效果不符合预期,可以调整。 output_desc。工具的出参描述,当前对Agent的表现无重要影响。
当增加该参数的值,可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。 模型规格:不同规格的模型支持的长度不同,若目标任务本身需要生成的长度已经超过模型上限,建议您替换可支持更长长度的模型。 数据质量:请检
的判断,尽量描述清楚。如果Agent实际执行效果不符合预期,可以调整。 inputDesc。工具的入参描述,为重要参数。该描述直接影响LLM对入参的提取,尽量描述清楚。如果Agent实际执行效果不符合预期,可以调整。 outputDesc。工具的出参描述,当前对Agent的表现无重要影响。
理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。 父主题:
4096 温度(temperature) 0.3 核采样(top_p) 1.0 话题重复度控制(presence_penalty) 0 部署推理服务后,可以采用人工评测的方案来评估模型效果。若评测过程中出现如下问题,可以参考解决方案进行优化: 问题一:模型答案没有按照Prompt要求回
边缘服务部署流程 边缘部署是指将模型部署到用户的边缘设备上。这些设备通常是用户自行采购的服务器,通过ModelArts服务纳管为边缘资源池。然后利用盘古大模型服务将算法部署到这些边缘资源池中。 图1 边缘资源池创建步骤 当前仅支持预置模型(盘古-NLP-N2-基础功能模型)和基于