检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908)
准备工作 准备资源 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
推理性能测试 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909)
准备工作 准备资源 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
推理性能测试 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)
准备工作 准备环境 准备代码 准备镜像 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)
准备工作 准备资源 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)
推理性能测试 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911)
训练脚本说明 Yaml配置文件参数配置说明 模型NPU卡数、梯度累积值取值表 各个模型训练前文件替换 NPU_Flash_Attn融合算子约束 BF16和FP16说明 录制Profiling 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.911)
文生视频模型训练推理 CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于DevServer适配PyTorch NPU训练推理指导(6.3.910) Open-Sora-Plan1.0基于DevServer适配PyTorch
通过人工标注方式标注数据 创建ModelArts人工标注作业 人工标注图片数据 人工标注文本数据 人工标注音频数据 人工标注视频数据 管理标注数据 父主题: 标注ModelArts数据集中的数据
标注ModelArts数据集中的数据 数据标注场景介绍 通过人工标注方式标注数据 通过智能标注方式标注数据 通过团队标注方式标注数据 管理标注作业 父主题: 数据准备与处理
准备模型训练代码 预置框架启动文件的启动流程说明 开发用于预置框架训练的代码 开发用于自定义镜像训练的代码 自定义镜像训练作业配置节点间SSH免密互信 父主题: 使用ModelArts Standard训练模型
在Notebook中使用Moxing命令 MoXing Framework功能介绍 Notebook中快速使用MoXing mox.file与本地接口的对应关系和切换 MoXing常用操作的样例代码 MoXing进阶用法的样例代码 父主题: 使用Notebook进行AI开发调试
制作自定义镜像用于训练模型 训练作业的自定义镜像制作流程 使用预置镜像制作自定义镜像用于训练模型 已有镜像迁移至ModelArts用于训练模型 从0制作自定义镜像用于创建训练作业(Pytorch+Ascend) 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU)
使用自动学习实现声音分类 准备声音分类数据 创建声音分类项目 标注声音分类数据 训练声音分类模型 部署声音分类服务 父主题: 使用自动学习实现零代码AI开发