检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts支持的预置镜像列表 ModelArts预置镜像更新说明 ModelArts统一镜像列表 Notebook专属预置镜像列表 训练专属预置镜像列表 推理专属预置镜像列表 父主题: 制作自定义镜像用于ModelArts Standard
使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
管理ModelArts模型 查看ModelArts模型详情 查看ModelArts模型事件 管理ModelArts模型版本 发布ModelArts模型 父主题: 使用ModelArts Standard部署模型并推理预测
配置ModelArts Standard访问授权 快速配置ModelArts委托授权 创建IAM用户并授权使用ModelArts 父主题: ModelArts Standard准备工作
管理Standard专属资源池 查看Standard专属资源池详情 扩缩容Standard专属资源池 升级Standard专属资源池驱动 修复Standard专属资源池故障节点 修改Standard专属资源池支持的作业类型 迁移Standard专属资源池和网络至其他工作空间 配置Standard专属资源池可访问公网
安装配置Grafana 在Windows上安装配置Grafana 在Linux上安装配置Grafana 在Notebook上安装配置Grafana 父主题: 使用Grafana查看AOM中的监控指标
ModelArts Standard资源管理 Standard资源池功能介绍 创建Standard专属资源池 管理Standard专属资源池
Standard部署模型并推理预测 推理部署使用场景 创建模型 创建模型规范参考 将模型部署为实时推理作业 将模型部署为批量推理服务 管理ModelArts模型 管理同步在线服务 管理批量推理作业
SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6.3.908) 训练场景和方案介绍 准备镜像环境 Finetune训练 LoRA训练 Controlnet训练 父主题: AIGC模型训练推理
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909) 推理场景介绍 准备工作 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 附录:工作负载Pod异常问题和解决方法
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 eagle 投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明
主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 Eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
准备工作 准备环境 准备代码 准备镜像 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.911)