检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、
"application/json" } } ] 将模型部署为在线服务 参考部署为在线服务将模型部署为在线服务。 在线服务创建成功后,您可以在服务详情页查看服务详情。 您可以通过“预测”页签访问在线服务。 父主题: 制作自定义镜像用于推理
在线服务和批量服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 批量服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。 批量服务一次性推理批量数据,处理完服务结束。在线服务提供API接口,供用户调用推理。 父主题:
SD WebUI推理方案概览 本文档主要介绍如何在ModelArts的DevServer和ModelArts Standard环境上部署Stable Diffusion的WebUI套件,使用NPU卡进行推理。 约束限制 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
kubectl是Kubernetes集群的命令行工具,配置kubectl后,您可通过kubectl命令操作Kubernetes集群。本文介绍如何配置kubectl工具,操作步骤如下。 登录ModelArts管理控制台,在左侧菜单栏中选择“AI专属资源池 > 弹性集群 Cluster”,进入“弹性集群
(可选)本地安装ma-cli 使用场景 本文以Windows系统为例,介绍如何在Windows环境中安装ma-cli。 Step1:安装ModelArts SDK 参考本地安装ModelArts SDK完成SDK的安装。 Step2:下载ma-cli 下载ma-cli软件包。 完成软件包签名校验。
vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、
JupyterLab常用功能介绍 JupyterLab视频介绍 JupyterLab主页介绍 下面介绍如何从运行中的Notebook实例打开JupyterLab。 登录ModelArts管理控制台,在左侧菜单栏中选择“开发空间 > Notebook”,进入Notebook页面。
IEF节点边缘服务部署失败 问题现象 部署边缘服务时,出现“异常”状态。 原因分析1 部署边缘服务时,使用到IEF纳管的边缘节点,就需要用户给ModelArts的委托赋予Tenant Administrator权限,否则将无法成功部署边缘服务。具体可参见IEF的权限说明。 处理方法1
process the new request 原因分析 该报错是因为发送预测请求后,服务出现停止后又启动的情况。 处理方法 需要您检查服务使用的镜像,确定服务停止的原因,修复问题。重新创建模型部署服务。 父主题: 服务部署
Arts支持Exporter功能,方便用户使用Prometheus等第三方监控系统获取ModelArts采集到的指标数据。 本章节主要介绍如何通过Prometheus查看Lite Cluster监控指标。 约束限制 需要在ModelArts Lite Cluster资源池详情页的配置管理页面中先打开“监控”开关。
--per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant 父主题:
vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、
vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、
vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、
上传镜像到容器镜像服务 参考pull/push 镜像体验章节,将上一步build的镜像上传到容器镜像服务上。 Step5 使用CCE进行部署 在CCE上创建工作负载,创建工作负载时所需的yaml文件可参考在Lite Cluster资源池上使用Snt9B完成推理任务。 在CCE上创建服务。 父主题:
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
--per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3 启动推理服务,启动推理服务时添加如下命令。 -q smoothquant 或者 --quantization smoothquant 父主题:
service_name:服务名称,保存评测结果时创建目录,示例为:llama2-13b-chat-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 service_url:成功部署推理服务后的服务预测地址,示例:http://
3fn"。dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path