检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
服务启动失败 问题现象 当服务事件中出现如下事件时,表示容器启动失败。 图1 服务启动失败 原因分析 服务启动失败的原因比较多样,可能有如下几种情况: AI应用本身问题,无法启动 镜像中配置的端口错误 健康检查配置有问题 模型推理代码customize_service.py编写有问题
不同实例的资源池安装的cuda和驱动版本号分别是什么? 专属资源池的cuda和驱动版本是可以根据用户的要求安装。如果需要调整,需提工单。 父主题: Standard资源池
在ModelArts Studio基于Llama3-8B模型实现新闻自动分类 仅“华东二”和“西南-贵阳一”区域支持使用ModelArts Studio大模型即服务平台(MaaS)。 MaaS是白名单功能,如果有试用需求,请提工单申请权限。 应用场景 在数字化时代,新闻的生成与传播速度不断刷新记录
训练输出的日志只保留3位有效数字,是否支持更改loss值? 在训练作业中,训练输出的日志只保留3位有效数字,当loss过小的时候,显示为0.000。具体日志如下: INFO:tensorflow:global_step/sec: 0.382191 INFO:tensorflow:step
GLM3-6B模型基于DevServer适配PyTorch NPU训练指导(6.3.904) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 推理前的权重合并转换 父主题: LLM大语言模型训练推理
SD3 Diffusers框架基于DevServer适配PyTorch NPU推理指导(6.3.907) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite DevServer
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard。资源规格需要使用专属资源池中的昇腾Snt9B资源,请参考创建资源池购买资源。 推荐使用“西南-贵阳一”Region上的昇腾资源。 专属资源池驱动检查 登录ModelArts控制台,单击“专属资源池
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard。资源规格需要使用专属资源池中的昇腾Snt9B资源,请参考创建资源池购买资源。 推荐使用“西南-贵阳一”Region上的昇腾资源。 专属资源池驱动检查 登录ModelArts控制台,单击“专属资源池
GPU A系列裸金属服务器如何进行RoCE性能带宽测试? 场景描述 本文主要指导如何在GPU A系列裸金属服务器上测试RoCE性能带宽。 前提条件 GPU A系列裸金属服务器已经安装了IB驱动。(网卡设备名称可以使用ibstatus或者ibstat获取。华为云Ant8裸金属服务器使用
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard。资源规格需要使用专属资源池中的昇腾Snt9B资源,请参考创建资源池购买资源。 推荐使用“西南-贵阳一”Region上的昇腾资源。 专属资源池驱动检查 登录ModelArts控制台,单击“专属资源池
创建可视化作业 功能介绍 创建可视化作业。 该接口为异步接口,作业状态请通过查询可视化作业列表与查询可视化作业详情接口获取。 URI POST /v1/{project_id}/visualization-jobs 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明
预训练 预训练数据处理 预训练任务 断点续训练 查看日志和性能 父主题: GLM3-6B模型基于DevServer适配PyTorch NPU训练指导(6.3.904)
服务部署 自定义镜像模型部署为在线服务时出现异常 部署的在线服务状态为告警 服务启动失败 服务部署、启动、升级和修改时,拉取镜像失败如何处理? 服务部署、启动、升级和修改时,镜像不断重启如何处理? 服务部署、启动、升级和修改时,容器健康检查失败如何处理? 服务部署、启动、升级和修改时
场景介绍 ChatGLM3-6B大模型是一个包含多种参数数量模型的语言模型。 方案概览 本文档以ChatGLM3-6B(以下简称GLM3-6B)为例,利用训练框架Pytorch_npu+华为自研Ascend Snt9b硬件,为用户提供了开箱即用的预训练和全量微调方案。 本方案目前配套的是
CUDA和CUDNN Vnt1机型软件版本建议:gpu driver version : 440.95.01 gpu driver version : 440.95.01(GPU驱动在宿主机中安装,镜像中无需安装) cuda runtime version : 10.2(PyTorch
日志提示"write line error" 问题现象 在程序运行过程中,刷出大量错误日志“[ModelArts Service Log]modelarts-pipe: write line error”。并且问题是必现问题,每次运行到同一地方的时候,出现错误。 原因分析 出现该问题的可能原因如下
准备代码 本教程中用到的数据和代码如下表所示,请提前准备好。 获取数据及代码 表1 准备代码 代码包名称 代码说明 下载地址 AscendCloud-3rdLLM-6.3.904-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据 本教程使用到的训练数据集是Alpaca数据集。Alpaca是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
准备环境 本文档中的模型运行环境是ModelArts Lite的DevServer。请参考本文档要求准备DevServer机器。 资源规格要求 计算规格:单机训练需要使用单机8卡,多机训练需要使用2机16卡。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*
准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍