检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts与ModelArts Pro的区别 ModelArts是一站式AI开发管理平台,提供领先算法技术,保证AI应用开发的高效和推理结果的准确,同时减少人力投入。ModelArts致力于底层模型专业开发、调参等。 ModelArts Pro根据预置工作流生成指定场景模
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的商品标签准备图片数据。每个商品标签需要准备20个数据以上,为了训练出效果较好的模型,
备用于模型训练的数据,上传至OBS服务中。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集
图片中的多个商品。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有材质类型的待定级图片。 为保证训练效果,需要准备至少20张待训练的图片数据,低于20张工作流
、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据集样本数应大于100,用于测试的已标注数据应不少于20张,样本数达1万张以上性能更优。
符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽
符。 保证图片质量,不能有损坏的图片。目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽
划线下划线外的特殊符号。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。
文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的热轧钢板表面缺陷标签准备图片数据。每个分类标签
保证图片质量:不能有损坏的图片。 目前支持的格式包括JPG、JPEG、PNG、BMP。 训练数据集 本样例训练数据集使用未标注数据。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有商品分类的图片,即覆盖所有标签的图片。 每个分类标签
支持换行。 基于已设计好的分类标签准备文本数据。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 针对未标注数据,将待标注的内容放在一个文本文件内,通用文本分类工作流仅支持中文文本内容的分类,其他语种的文本分类请使用多语种文本分类工作流。
使用单模板工作流开发应用 ModelArts Pro的文字识别套件提供了通用单模板工作流,通过工作流指引可构建文字识别模板,识别单个板式图片中的文字,快速实现文档、票证等场景的文字识别。 本章节提供一个身份证样例,帮助您快速熟悉使用文字识别套件中的通用单模板工作流开发应用的过程。通过上传模板图片、框选参
文本数据至少包含2个及以上的标签。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 多语种文本分类工作流仅支持对单语种的文本分类,当前支持文本分类的语种包括英语、法语、德语、西班牙语、葡萄牙语、阿拉伯语等。暂不支持对同一文本中含多语种的文本进行分类训练。
支持图像任意角度的水平旋转。 目前不支持复杂背景(如户外自然场景、防伪水印等)和文字扭曲图像的文字识别。 用于训练多模板分类器的训练集,需要把各个模板的训练图片打包成一个文件夹并压缩成“zip”包,“zip”包文件大小不超过10M。 例如训练“保险单”模板的训练集,需要把同模板的保险单图
待新建的数据集存储至OBS的位置。 单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 选择步骤1:准备数据中提前创建好的输出数据集的OBS路径“mapro-nlp/data-out”。 勾选已上传的数据集。
SK)两部分,华为云通过AK识别用户的身份,通过SK对请求数据进行签名验证,用于确保请求的机密性、完整性和请求者身份的正确性。 登录访问密钥页面,依据界面操作指引,获取AK、SK。下载得到的访问密钥为credentials.csv文件,文件中的B列和C列分别是AK、SK信息。 图4
创建名称为“training-data-in”的文件夹用于存放训练数据集。 创建名称为“training-data-out”的文件夹用于存放输出的数据集。 创建OBS桶和文件夹的操作指导请参见创建桶和新建文件夹。为保证数据能正常访问,请务必保证创建的OBS桶与ModelArts Pro服务在同一区域。
标注数据 由于模型训练过程需要大量有标签的数据,如果开发应用时,上传的训练数据集是未标注的,需要对数据集中的数据进行标注。 针对文本分类场景,是对文本的内容按照标签进行分类处理,标签名是由中文、大小写字母、数字、中划线或下划线组成,且不超过32位的字符串。 进入数据标注页面 在“数据