检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的多语言文本翻译工作流,并确保不同用户需求(如普通对话、文本翻译)能够被准确识别和处理。 工作流节点设计 选取工作流的几个重要节点,每个节点负责特定的任务。以下是各节点的功能和设计思路: 开始节点:作为工作流的入口,开始节点负责接收用户输入的文本。无论是普通对话文本,还是包含翻译请求的文本,都将从此节点开始。
盘古大模型服务简介 盘古大模型服务致力于深耕行业,打造多领域行业大模型和能力集。 ModelArts Studio大模型开发平台是盘古大模型服务推出的集数据管理、模型训练、模型部署于一体的综合平台,专为开发和应用大模型而设计,旨在为开发者提供简单、高效的大模型开发和部署方式。平台
产品优势 预置多,数据工程“易” ModelArts Studio大模型开发平台预置多种数据处理AI算子,多种标注工具,满足用户多任务多场景需求,提高开发/标注效率>10X。 0代码,模型开发“简” ModelArts Studio大模型开发平台预置盘古系列预训练大模型,支持快速
应用提供自定义数据,并与之进行互动。多种格式的本地文档(支持docx、pptx、pdf等)都可以导入至知识库。 灵活的工作流设计:平台提供灵活的工作流设计,用于开发者处理逻辑复杂、且有较高稳定性要求的任务流。 支持“零码”和“低码”开发者通过“拖拉拽”的方式快速搭建一个工作流,创建一个应用。
使用数据工程构建NLP大模型数据集 NLP大模型支持接入的数据集类型 盘古NLP大模型仅支持接入文本类数据集,数据集文件内容包括:预训练文本、单轮问答、多轮问答、带人设单轮问答、带人设多轮问答等,不同训练方式所需要使用的数据见表1,该数据集格式要求请参见文本类数据集格式要求。 表1 训练NLP大模型数据集类型要求
txt、mobi、epub、docx、pdf 网页 html 预训练文本 jsonl 单轮问答 jsonl、csv 单轮问答(人设) jsonl、csv 多轮问答 jsonl 多轮问答(人设) jsonl 问答排序 jsonl、csv 图片类 仅图片 jpg、jpeg、png、bmp、tar包 图片+Caption
aS和SaaS类云服务自身的安全,涵盖华为云数据中心的物理环境设施和运行其上的基础服务、平台服务、应用服务等。这不仅包括华为云基础设施和各项云服务技术的安全功能和性能本身,也包括运维运营安全,以及更广义的安全合规遵从。 租户:负责云服务内部的安全,安全地使用云。华为云租户的安全责
能够理解并适应多变的对话上下文。 图4 多场景测试-复杂对话场景 优化Prompt设计:从prompt设计维度来看,可以通过以下方式进行优化: 清晰的输入指令: 在翻译场景中,明确的输入指令将提升工作流的运行效果。例如:prompt可以设计为:请将以下中文句子翻译成英文:“我喜欢
Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户): 平台提供了Pr
准,是数据工程中的核心环节。 数据清洗 通过专用的清洗算子对数据进行预处理,确保数据符合模型训练的标准和业务需求。不同类型的数据集使用专门设计的算子,例如去除噪声、冗余信息等,提升数据质量。 数据合成 利用预置或自定义的数据指令对原始数据进行处理,并根据设定的轮数生成新数据。该过
什么是盘古大模型 盘古大模型服务致力于深耕行业,打造多领域行业大模型和能力集。ModelArts Studio大模型开发平台是盘古大模型服务推出的集数据管理、模型训练和模型部署为一体的一站式大模型开发平台及大模型应用开发平台,盘古NLP大模型、多模态大模型、CV大模型、预测大模型、科学计算
P、镜像等公共服务。Region分为通用Region和专属Region,通用Region指面向公共租户提供通用云服务的Region;专属Region指只承载同一类业务或只面向特定租户提供业务服务的专用Region。 详情请参见区域和可用区。 可用区(AZ,Availability
的模型。 问答模块:盘古-NLP-N2-基础功能模型 说明:该模块需要具备多轮对话能力和阅读理解能力。当前基模型已经具备了通用的多轮对话能力和阅读理解能力,可以通过指令微调进一步强化大模型在特定垂域上的多轮对话能力和阅读理解能力。 准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端返回的数据是否和服务SDK设计的结构、字段一致。 SDK运行报错 java.lang.NoClassDefFoundError: Could not initialize
不具备的能力。插件提供丰富的外部服务接口,当任务执行时,模型会根据提示词感知适用的插件,并自动调用它们,从外部服务中获取结果并返回。这样的设计使得Agent能够智能处理复杂任务,甚至跨领域解决问题,实现对复杂问题的自动化处理。 Agent开发平台支持两种类型的插件: 预置插件:平
低代码构建多语言文本翻译工作流 方案设计 构建流程 效果评估与优化 典型问题 附录 父主题: Agent应用实践
有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词,它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都起着重要作
编排工作流 Agent平台支持对工作流编排多个节点,以实现复杂业务流程的编排。 工作流包含两种类型: 对话型工作流。面向多轮交互的开放式问答场景,基于用户对话内容提取关键信息,输出最终结果。适用于客服助手、工单助手、娱乐互动等场景。 任务型工作流。面向自动化处理场景,基于输入内容
大模型生成文本的过程可视为一个黑盒,同一模型下对于同一个场景,使用不同的提示词也会获得不同的结果。提示工程是指在不更新模型参数的前提下,通过设计和优化提示词的方式,引导大模型生成目标结果的方法。 为什么需要提示工程 模型生成结果优劣取决于模型能力及提示词质量。其中模型能力的更新需要