检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
大型企业用户的使用场景下很常见。如果需要对委托授权的权限范围进行精确控制,可以参考本章节进行MaaS服务的定制化委托授权。 本章节主要介绍如何给IAM用户下的子用户配置更细粒度的权限。 前提条件 给用户组授权之前,请先了解用户组可以添加的使用ModelArts及其依赖服务的权限,
├── requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
scripts/llama2/2_convert_mg_hf.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
scripts/llama2/2_convert_mg_hf.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
scripts/llama2/2_convert_mg_hf.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
scripts/llama2/2_convert_mg_hf.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
配置,否则精度会异常;其他模型不建议开启,因为性能会有损失。 如果需要增加模型量化功能,启动推理服务前,先参考推理模型量化章节对模型做量化处理。 启动服务与请求。此处提供vLLM服务API接口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs
client向server发送数据,server向client发送数据等。模型的推理过程在自定义镜像中完成,如下载模型,加载模型,执行预处理,完成推理,拼装响应体等。 操作步骤 WebSocket在线服务开发操作步骤如下: 上传镜像至容器镜像服务 使用镜像创建AI应用 使用AI应用部署在线服务
创建SFT全参微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 若镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
创建LoRA微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 若镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
创建LoRA微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/ll
创建SFT全参微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/ll
alo_name String 别名。 id Integer 原因ID。 reason String 原因描述。 suggestion String 处理建议。 表7 LabelAttribute 参数 参数类型 描述 default_value String 标签属性默认值。 id String
在开发环境中调试代码 由于已经连接至云端开发环境,此时可以方便的在本地PyCharm中编码、调测并运行。实际运行环境为云上开发环境,资源为云上昇腾AI处理器资源。可以做到本地编写修改代码,直接在云上环境运行。 像本地运行代码一样,直接单击运行按钮运行代码即可,此时虽然是在本地IDE单击的运行
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数即其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数即其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
、代码上传、提交训练作业、将训练日志获取到本地展示等,用户只需要专注于本地的代码开发即可。 本章节介绍了使用PyCharm Toolkit如何连接Notebook。 视频介绍 使用限制 当前仅支持2019.2-2023.2之间(包含2019.2和2023.2)版本,包括社区版和专业版。
safetensors或pytorch_model.bin 预训练模型的权重文件。 tokenizer.json (可选)预处理器的词表文件,用于初始化Tokenizer。 tokenizer_config.json (可选)预处理器的配置文件。 modeling_xxx.py (可选)自定义模型的代码文件,继承自P
微调。 表1 gallery_train文件列表 文件类型 文件说明 “train.py” 必选文件,训练脚本文件,定义了自定义模型的训练处理方式。代码示例请参见train.py示例。 如果训练脚本里使用了其他脚本文件,则必须一起打包在gallery_train文件夹里上传,否则会导致微调失败。
0(最多支持2位小数,小数点后第3位做四舍五入处理)。 memory Integer 内存,单位为MB,仅支持整数。 cpu Float CPU核数,支持配置小数,输入值不能小于0.01(最多支持2位小数,小数点后第3位做四舍五入处理)。 ascend_a310 Integer