检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。
json等tokenizer文件或者其他json文件。若缺少则需要直接复制至权重转换后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
son文件。如果缺少则需要直接复制至权重转换后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
json等tokenizer文件或者其他json文件。若缺少则需要直接复制至权重转换后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
son文件。如果缺少则需要直接复制至权重转换后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
son文件。如果缺少则需要直接复制至权重转换后的文件夹中,否则不能直接用于推理。 用户自定义执行权重转换参数修改说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
customize_service.py依赖的其他文件可以直接放model目录下,需要采用绝对路径方式访问。绝对路径获取请参考绝对路径如何获取。 ModelArts针对多种引擎提供了样例及其示例代码,您可以参考样例编写您的配置文件和推理代码,详情请参见ModelArts样例列
配置,否则精度会异常;其他模型不建议开启,因为性能会有损失。 如果需要增加模型量化功能,启动推理服务前,先参考推理模型量化章节对模型做量化处理。 启动服务与请求。此处提供vLLM服务API接口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs
├── requirements.txt # 第三方依赖 目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x
scripts/llama2/2_convert_mg_hf.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
scripts/llama2/2_convert_mg_hf.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
scripts/llama2/2_convert_mg_hf.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
scripts/llama2/2_convert_mg_hf.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
scripts/llama2/2_convert_mg_hf.sh 脚本,自定义环境变量的值,并运行该脚本。其中环境变量详细介绍如下: 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron
大型企业用户的使用场景下很常见。如果需要对委托授权的权限范围进行精确控制,可以参考本章节进行MaaS服务的定制化委托授权。 本章节主要介绍如何给IAM用户下的子用户配置更细粒度的权限。 前提条件 给用户组授权之前,请先了解用户组可以添加的使用ModelArts及其依赖服务的权限,
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数即其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
配置,否则精度会异常;其他模型不建议开启,因为性能会有损失。 如果需要增加模型量化功能,启动推理服务前,先参考推理模型量化章节对模型做量化处理。 启动服务与请求。此处提供vLLM服务API接口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs
创建预训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/ll
创建预训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 若镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
模型名称。 model_usage Integer 模型用途。 1代表图像分类 2代表检测物体的类别和位置 3代表图像语义分割 4代表自然语言处理 5图嵌入 model_precision String 模型精度描述。 model_size Long 模型大小,单位为字节(Byte)。