检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
passed in a non-contiguous input. 原因分析 出现该问题的可能原因如下: 数据输入不连续,cuDNN不支持的类型。 处理方法 禁用cuDNN,在训练前加入如下代码。 torch.backends.cudnn.enabled = False 将输入数据转换成contiguous。
使用自定义镜像创建的训练作业一直处于运行中 问题现象 使用自定义镜像创建训练作业,训练作业的“状态”一直处于“运行中”。 原因分析及处理办法 日志打印如下内容,表示自定义镜像的CPU架构与资源池节点的CPU架构不一致。 standard_init_linux.go:215: exec
输入有效的远端文件URL后,系统会自动识别上传文件名称,单击“上传”,开始上传文件。 图3 输入有效的远端文件URL 图4 远端文件上传成功 异常处理 远端文件上传失败。可能是网络原因。请先在浏览器中输入该远端文件的URL地址,测试该文件是否能下载。 图5 远端文件上传失败 父主题: 上传文件至JupyterLab
表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。
“RuntimeError: std:exception” 原因分析 PyTorch1.0镜像中的libmkldnn软连接与原生torch的冲突,具体可参看文档。 处理方法 按照issues中的说明,应该是环境中的库冲突了,因此在启动脚本最开始之前,添加如下代码。 import os os.system("rm
原因分析 运行参数中未定义该参数。 在训练环境中,系统可能会传入在Python脚本里没有定义的其他参数名称,导致参数无法解析,日志报错。 处理方法 参数定义中增加该参数的定义,代码示例如下: parser.add_argument('--init_method', default='tcp://xxx'
(2)执行nvidia-smi失败,提示Failed to initialize NVML: Driver/library version mismatch 处理方法 执行命令:lsmod | grep nvidia,查看内核中是否残留旧版nvidia,显示如下: nvidia_uvm
训练作业的监控内存指标持续升高直至作业失败 问题现象 训练作业的“状态”为“运行失败”。 原因分析 训练作业的监控内存指标持续升高,导致最后训练作业失败。 处理步骤 查询训练作业的日志和监控信息,是否存在明确的OOM报错信息。 是,训练作业的日志里存在OOM报错,执行2。 否,训练作业的日志里没有
在ModelArts中图像分类和物体检测具体是什么? 图像分类是根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。简单的说就是识别一张图中是否
该桶下创建文件夹目录用于后续存储代码使用,例如:training_data。 创建VPC 虚拟私有云(Virtual Private Cloud)可以为您构建隔离的、用户自主配置和管理的虚拟网络环境,操作指导请参考创建虚拟私有云和子网。 创建SFS Turbo SFS Turbo
该桶下创建文件夹目录用于后续存储代码使用,例如:training_data。 创建VPC 虚拟私有云(Virtual Private Cloud)可以为您构建隔离的、用户自主配置和管理的虚拟网络环境,操作指导请参考创建虚拟私有云和子网。 创建SFS Turbo SFS Turbo
创建桶的区域需要与ModelArts所在的区域一致。例如:当前ModelArts在华北-北京四区域,在对象存储服务创建桶时,请选择华北-北京四。 如何查看OBS桶与ModelArts的所处区域,请参见查看OBS桶与ModelArts是否在同一区域。 请勿开启桶加密,ModelArts不支
${model_name} # 模型名称 |── data # 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune #
到“/cache”,实际下载的数据会翻倍。例如只下载了2.5TB的数据,程序就显示空间不够而失败,因为/cache只有4TB的可用空间。 处理方法 在使用Tensorflow多节点作业下载数据时,正确的下载逻辑如下: import argparse parser = argparse
keras官方文档请参见https://github.com/keras-team/keras/releases/tag/2.3.0。 处理方法 将训练代码里的参数名称“lr”改成“learning_rate”。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发
with error code 0” 原因分析 出现该问题的可能原因如下: pytorch1.4引擎与之前pytorch1.3版本兼容性问题。 处理方法 在images之后添加contigous。 images = images.cuda() pred = model(images
obs:object:PutObject 管理OBS中的数据集 标注OBS数据 创建数据管理作业 管理表格数据集 DLI dli:database:displayAllDatabases dli:database:displayAllTables dli:table:describeTable 在数据集中管理DLI数据
表示流水线并行中一个micro batch所处理的样本量。在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。
port xxxxx: Connection refused”如何解决? 报错“no such identity: C:/Users/xx /test.pem: No such file or directory”如何解决? 报错“Bad owner or permissions
Network is unreachable’ 原因分析 出现该问题的可能原因如下: 因为安全性问题,ModelArts内部训练机器不能访问外网。 处理方法 将pretrained改成false,提前下载好预训练模型,加载下载好的预训练模型位置即可,可参考如下代码。 import torch