检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据量很少,可以微调吗 不同规格的模型对微调的数据量都有相应要求。 如果您准备用于微调的数据量很少,无法满足最小的量级要求,那么不建议您直接使用该数据进行微调,否则可能会存在如下问题: 过拟合:当微调数据量很小时,为了能充分学习这些数据的知识,可能会训练较多的轮次,因而模型会过分
数据保护技术 盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数
创建数据集清洗任务 数据集创建完成后,可以使用数据清洗功能,对异常数据进行清理,或进行数据转换、过滤和去重等操作。 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据清洗”,单击界面右上角“创建任务”。 图1 数据清洗 依据需要清洗的数据类型,选择对应的数据集和数据集
创建模型评估数据集 在收集评估数据集时,应确保数据集的独立性和随机性,并使其能够代表现实世界的样本数据,以避免对评估结果产生偏差。对评估数据集进行分析,可以帮助了解模型在不同情境下的表现,从而得到模型的优化方向。 在“数据工程 > 数据管理”中创建“评测”类型的数据集作为评估数据集,数据集创建完成后需要执行发布操作。
发布数据集 刚创建的数据集在未发布状态下,无法应用于模型训练,数据集创建、清洗完成后需要执行“发布”操作才可以将该数据集用于后续的任务中。 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,在“我的数据集”页签找到未发布的数据集,单击操作列“版本发布”执行发布数据集操作。
获取数据清洗模板 在清洗数据时,用户可以通过组合不同的数据清洗算子来实现数据清洗功能。平台提供了多种数据清洗模板,用户可以直接套用这些模板进行数据清洗。 数据清洗模板获取方式如下: 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据清洗”,进入“清洗模板”页面,在该页面查看预置的数据清洗模板。
模型训练所需数据量与数据格式要求 盘古大模型套件平台支持NLP大模型的训练。不同模型训练所需的数据量和数据格式有所差异,请基于数据要求提前准备训练数据。 数据量要求 自监督训练 在单次训练任务中,一个自监督训练数据集内,上传的数据文件数量不得超过1000个,单文件大小不得超过1G
检测数据集质量 数据集创建成功后,平台将对数据集中的数据进行质量校验,并给出健康度评分、合规度评分与数据长度分布。 检测数据集质量 在“数据工程 > 数据管理”页面,选择“我的数据集”或者“训练数据集”页签。 单击数据集名称,进入数据集详情页,查看详细的数据质量。 其中,数据长度
训练数据集创建流程 数据是大模型训练的基础,提供了模型学习所需的知识和信息。大模型通过对大量数据的学习,能够理解并抽象出其中的复杂模式,从而进行精准的预测和决策。在训练过程中,数据的质量和多样性至关重要。高质量的数据能够提升模型对任务的理解,而多样化的数据则帮助模型更好地应对各种
数据量足够,但质量较差,可以微调吗 对于微调而言,数据质量非常重要。一份数据量少但质量高的数据,对于模型效果的提升要远大于一份数据量多但质量低的数据。若微调数据的质量较差,那么可能会导致模型学习到一些错误或者不完整的信息,从而影响模型的准确性和可靠性。因此,不建议您直接使用低质量数据进行微调。
数据量满足要求,为什么微调后的效果不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 典型训练问题和优化策略
难以准确捕捉,频繁转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的自然语言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求
cache = Caches.of(Caches.REDIS); // mysql Cache cache = Caches.of(Caches.SQL); 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结果对象。例如,把1+1这个问题和对应的答案2保存到缓存中,可参考以下示例。
清洗数据集(可选) 清洗算子功能介绍 获取数据清洗模板 创建数据集清洗任务 父主题: 准备盘古大模型训练数据集
选择模型类型、训练类型以及基础模型。 数据配置 选择训练数据集和配比类型,设置训练数据集配比,详情请参考数据配比功能介绍。 在训练数据集配比完成后,在单击“创建”或后续修改保存时,会对数据集的有效数据进行统计,确保满足模型训练的要求。 图3 数据配置 基本配置 填写训练数据集名称和描述,选择数据标签。 图4
上传文件限xlsx格式。 数据行数不小于10行,不大于50行。 数据不允许相同表头,表头数量小于20个。 数据单条文本长度不超过1000。 创建数据集时会对相关限制条件进行校验。 数据参考格式 图1 数据参考格式 图2 数据示例 创建提示词评估数据集 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程
Redis redis_cache = Caches.of("redis") # mysql sql_cache = Caches.of("sql") 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结果对象。例如,把1+1这个问题和用户cache会话下对应的答案2保存到缓存中,参考示例如下:
图8 创建数据集 在新建数据集页面,依据需要进行的训练任务,选择导入数据,填写基本信息。 导入数据 选择模型类型、训练类型、数据类型、导入格式以及数据来源。 表1 数据集路径说明 数据集训练类型 数据集所在OBS路径 自监督训练数据集 创建数据集时,需要指定数据文件所在的文件夹。
整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:如果微调数据很多,从客观上来说越多的数据越能接近真实分布,那么
准备盘古大模型训练数据集 训练数据集创建流程 模型训练所需数据量与数据格式要求 创建一个新的数据集 检测数据集质量 清洗数据集(可选) 发布数据集 创建一个训练数据集