检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
优化训练数据的质量 在数据科学和机器学习领域,数据的质量和多样性对模型的效果至关重要。通过有效的数据预处理和数据优化方法,通过提升训练数据的质量可以显著提升训练所得模型的效果。以下是一些关键的数据优化方法及其具体过程: 数据加工 错误数据过滤 :在大规模数据集中,噪声和错误数据是不可
预测类数据集格式要求 平台支持创建预测类数据集,创建时可导入时序数据、回归分类数据。 时序数据:时序预测数据是一种按时间顺序排列的数据序列,用于预测未来事件或趋势,过去的数据会影响未来的预测。 回归分类数据:回归分类数据包含多种预测因子(特征),用于预测连续变量的值,与时序数据不同,回归分类数据不要求数据具有时间顺序。
异常值。 通过可视化方法,数据可视化或者使用箱线图进行异常值的排查。 结合数据自身特征,进行异常数据的筛选。 对于异常值,视情况进行删除、替换、保留等操作,兼顾模型的收敛与鲁棒性。 优化举例: 某数据集中,盐度(S)变量在下载过程中存在数据块缺失与数据块偏移的问题,如图1、图2,
视频类数据集格式要求 ModelArts Studio大模型开发平台支持创建视频类数据集,创建时可导入多种形式的数据,具体格式要求详见表1。 表1 视频类数据集格式要求 文件内容 文件格式 文件要求 视频 mp4或avi 支持mp4、avi视频格式上传,所有视频可以放在多个文件夹
数据合成:平台支持利用预置或自定义的数据指令对预训练文本、单轮问答、单轮问答(人设))数据集类型进行处理,并根据设定的轮数生成新数据。通过数据合成技术,可以生成大量高质量的训练数据,这些数据可以用于大模型的预训练,增强模型的泛化能力和性能。 数据标注:平台支持对无标签的数据添加
数据保护技术 盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数
通过这些功能,用户可以轻松将大量数据导入平台,为后续的数据加工和模型训练等操作做好准备。 数据加工:平台提供了数据加工、数据合成、数据标注、数据配比的加工操作,旨在确保原始数据能够满足各种业务需求和模型训练的标准,生成“加工数据集”。 数据加工:数据加工旨在通过使用数据集加工算子对数据进行预处理操作
在完成数据标注后,如果无需进行标注审核,可直接在“数据标注 > 任务管理”页面单击“生成”,生成加工数据集。 生成的加工数据集可在“数据工程 > 数据管理 > 数据集 > 加工数据集”中查看。 审核标注后的图片类数据集 如果在创建图片类数据集标注任务时启用了标注审核功能,则在完成标注
任务管理”页面单击“生成”,生成加工数据集。 生成后的加工数据集可在“数据工程 > 数据管理 > 数据集 > 加工数据集”中查看。 管理标注后的文本类数据集 平台支持超级管理员、管理员、标注管理员对标注的数据集进行如下操作: 生成:在完成数据标注审核后,需超级管理员、管理员、标注管理员角色在“标
在完成数据标注后,如果无需进行标注审核,可直接在“数据标注 > 任务管理”页面单击“生成”,生成加工数据集。 生成的加工数据集可在“数据工程 > 数据管理 > 数据集 > 加工数据集”中查看。 审核标注后的视频类数据集 如果在创建视频类数据集标注任务时启用了标注审核功能,则在完成标注
jsonl 训练NLP大模型所需数据量 使用数据工程构建盘古NLP大模型数据集进行模型训练时,所需数据量见表2。 表2 构建NLP大模型所需数据量 模型规格 训练类型 推荐数据量 最小数据量(数据条数) 单场景推荐训练数据量 单条数据Token长度限制 N1 微调 - 1000条/每场景
管理盘古数据资产 数据资产介绍 数据资产是指在平台中被纳入管理、存储并可供使用的数据集。 数据资产包含以下两种形式: 用户自行发布的数据集。 用户可以通过“数据工程 > 数据发布 > 数据流通”功能将数据集发布为数据资产。发布的数据集支持查看详细信息、编辑、删除以及发布至AI Gallery等操作。
总体而言,数据加工不仅提升了数据处理的效率,还可通过优化数据质量和针对性处理,支持高效的模型训练。通过数据加工,用户能够快速构建高质量的数据集,推动大模型的成功开发。 支持数据加工的数据集类型 当前支持数据加工操作的数据集类型见表1。 表1 支持数据加工操作的数据集类型 数据类型 数据加工
加工数据集 数据集加工场景介绍 数据集加工算子介绍 加工文本类数据集 加工图片类数据集 加工视频类数据集 加工气象类数据集 管理加工后的数据集 父主题: 使用数据工程构建数据集
发布数据集 数据集发布场景介绍 发布文本类数据集 发布图片类数据集 发布视频类数据集 发布气象类数据集 发布预测类数据集 发布其他类数据集 管理发布后的数据集 父主题: 使用数据工程构建数据集
通过专用的加工算子对数据进行预处理,确保数据符合模型训练的标准和业务需求。不同类型的数据集使用专门设计的算子,例如去除噪声、冗余信息等,提升数据质量。 合成数据集 利用预置或自定义的数据指令对原始数据进行处理,并根据设定的轮数生成新数据。该过程能够在一定程度上扩展数据集,增强训练模型的多样性和泛化能力。 标注数据集
使用数据工程构建数据集 数据工程介绍 数据工程使用流程 数据集格式要求 导入数据至盘古平台 加工数据集 发布数据集 数据工程常见报错与解决方案
在左侧导航栏中选择“数据工程 > 数据获取 > 原始数据集”,单击需要查看的数据集名称。 查看数据集基本信息。在“基本信息”页签,可以查看数据详情、数据来源以及扩展信息。 下载原始数据集。在“数据预览”页签,可以查看数据内容,单击右上角“下载”即可下载原始数据集。 查看数据血缘。在“数据血缘”
使用数据工程构建科学计算大模型数据集 科学计算大模型支持接入的数据集类型 盘古科学计算大模型仅支持接入气象类数据集,该数据集格式要求请参见气象类数据集格式要求。 训练科学计算大模型训练数据要求所需数据量 构建科学计算大模型进行训练的数据要求见表1。 表1 科学计算大模型训练数据要求
在左侧导航栏中选择“数据工程 > 数据发布 > 发布任务”,单击界面右上角“创建发布任务”。 在“创建发布任务”页面,选择数据集模态,如“文本 > 预训练文本”类型的数据集。 图1 选择数据集模态 选择数据集,单击“下一步”。 在“基本配置”中选择数据用途、数据集可见性、适用场景。