检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
进行训练时,需要修改 Dockerfile 中的 transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker
进行训练时,需要修改 Dockerfile 中的 transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker
进行训练时,需要修改 Dockerfile 中的 transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker
使用环境变量SAVE_PATH重新覆盖权重文件保存路径,作为最终的权重保存路径。修改代码如图2。 图2 修改权重保存路径 多机训练场景下,需要将CODE_DIR修改为OBS_CODE_DIR目录,则可以使用scripts/tools/sync_with_obs.py工具将其它节点的权重文件同步上传到主节点。修改代码如图3。
角色与策略相关介绍请参考权限基本概念。 “新增委托 > 权限配置 > 普通用户” 普通用户包括用户使用ModelArts完成AI开发的所有必要功能权限,如数据的访问、训练任务的创建和管理等。一般用户选择此项即可。 可以单击“查看权限列表”,查看普通用户权限。 “新增委托 > 权限配置 > 自定义”
使用环境变量SAVE_PATH重新覆盖权重文件保存路径,作为最终的权重保存路径。修改代码如图2。 图2 修改权重保存路径 多机训练场景下,需要将CODE_DIR修改为OBS_CODE_DIR目录,则可以使用scripts/tools/sync_with_obs.py工具将其它节点的权重文件同步上传到主节点。修改代码如图3。
系统自动创建委托名称,用户可以手动修改。 “新增委托 > 权限配置 > 普通用户” 普通用户包括用户使用ModelArts完成AI开发的所有必要功能权限,如数据的访问、训练任务的创建和管理等。一般用户选择此项即可。 可以单击“查看权限列表”,查看普通用户权限。 “新增委托 > 权限配置 > 自定义”
角色与策略相关介绍请参考权限基本概念。 “新增委托 > 权限配置 > 普通用户” 普通用户包括用户使用ModelArts完成AI开发的所有必要功能权限,如数据的访问、训练作业的创建和管理等。一般用户选择此项即可。 可以单击“查看权限列表”,查看普通用户权限。 “新增委托 > 权限配置 > 自定义”
me”。 order 否 String 排序方式,支持“asc”和“desc”,默认为“asc”。 offset 否 Integer 起始索引,默认为“0”。 limit 否 Integer 限制本次返回的结果数据条数,取值范围(0,∞),默认值为“0”,返回全部。 workspace_id
数,则开始训练时会将Notebook中的训练数据压缩并上传到该位置,不可重复上传。如果第一次上传后,建议将is_local_source修改为False,obs_path指向刚才上传的压缩数据文件位置;如果用户没有填写,则不会进行压缩上传。 local_path:必选参数,Not
checkpointing_steps=num修改。 若显存较低可以调整batch_size保证正常运行,改为8或者更小。 本次训练step为1000,训练时间较长,可以改为500。 如开启deepspeed训练时,需要设置参数checkpointing_steps>max_tr
示例如下: 图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3
如下: 图1 抽取kv-cache量化系数 注意: 1、抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 2、当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4
示例如下: 图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3
如下: 图1 抽取kv-cache量化系数 注意: 1、抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 2、当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4
示例如下: 图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3
json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 1、 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 2、当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4
示例如下: 图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3
divided by 4, (counting in double words, 32 bits), received on all VLs from the port. counting in double words, 32 bits ≥0 NA NA NA 网卡发送数据总量 ma
是否必选 参数类型 描述 created_at 否 String 创建时间。 subscription_id 否 String 订阅ID,唯一性标识。创建订阅时,后台自动生成。 topic_urns 是 Array of strings 订阅的主题。 entity 否 String