检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
将训练启动脚本中的“NODE_RANK="$VC_TASK_INDEX"”修改为“NODE_RANK="$RANK_AFTER_ACC"”。 将训练启动脚本中的“MASTER_ADDR="${VC_WORKER_HOSTS%%,*}"”修改为“MASTER_ADDR="${MA_VJ_NAME}-$
当使用此方式时,输入数据目录下的文件只能以.csv为后缀,且需配置mapping_rule参数,以表达推理请求体中各个参数对应到csv的索引。 cluster_id 否 String 可选,部署服务时使用的资源池ID。对于rel-time和batch服务类型,为旧版专属资源池I
5:验收结果同步中。验收任务改为异步,新增验收结果同步中的状态,此时不允许发起新的验收任务,也不允许继续当前验收,任务名称的地方提示用户同步中。 6:已创建。owner创建完任务,未启动,仅owner/manager可见任务列表。 7:验收采样中。发起验收改为异步,新增验收采样中的状
进行训练时,需要修改 install.sh 中的 transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而install
进行训练时,需要修改 install.sh 中的 transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而install
需要去掉模型文件目录下存在dockerfile文件。 图2 构建日志:dockerfile文件目录有问题 pip软件包版本不匹配,需要修改为日志中打印的存在的版本。 图3 pip版本不匹配 构建日志中出现报错:“exec /usr/bin/sh: exec format error”。
json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3
能够满足企业对权限最小化的安全管控要求。 角色与策略相关介绍请参考权限基本概念。 “新增委托 > 权限配置 > 普通模式” 在服务列表右侧勾选“全选”。 图5 普通模式 “新增委托 > 权限配置 >高权限模式 ” 高权限模式下,配置的权限范围较大,适用于有管理员权限需求的用户。
进行训练时,需要修改 install.sh 中的 transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 以创建llama2-13b预训练作业为例,执行脚本0_pl_pretrain_13b.sh时,命令如下:
进行训练时,需要修改 install.sh 中的 transformers 的版本。 由默认 transformers==4.47.0 修改为:transformers==4.44.2 以创建llama2-13b预训练作业为例,执行脚本0_pl_pretrain_13b.sh时,命令如下:
况,导致空间不足。 请排查是否使用的是GPU资源。如果使用的是CPU规格的资源,“/cache”与代码目录共用10G,会造成内存不足,请更改为使用GPU资源。 请在代码中添加环境变量来解决。 import os os.system('export TMPDIR=/cache') 父主题:
json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3
json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3
进行训练时,需要修改 install.sh 中的 transformers 的版本。 由默认 transformers==4.47.0 修改为:transformers==4.44.2 以创建llama2-13b预训练作业为例,执行脚本0_pl_pretrain_13b.sh时,命令如下:
进行训练时,需要修改 install.sh 中的 transformers 的版本。 由默认 transformers==4.45.0 修改为:transformers==4.44.2 以创建llama2-13b预训练作业为例,执行脚本0_pl_pretrain_13b.sh时,命令如下:
5:验收结果同步中。验收任务改为异步,新增验收结果同步中的状态,此时不允许发起新的验收任务,也不允许继续当前验收,任务名称的地方提示用户同步中。 6:已创建。owner创建完任务,未启动,仅owner/manager可见任务列表。 7:验收采样中。发起验收改为异步,新增验收采样中的状
1)如果本地已有权重,请将MODEL_ID修改为权重路径; MODEL_ID = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct" 2)如果量化Deepseek-V2-236B模型,请将num_gpus改为8; device_map = cal
1)如果本地已有权重,请将MODEL_ID修改为权重路径; MODEL_ID = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct" 2)如果量化Deepseek-V2-236B模型,请将num_gpus改为8; device_map = cal
building_failed: 构建失败 description 否 String 描述信息,可支持模糊匹配。 offset 否 Integer 指定要查询页的索引,默认为“0”。 limit 否 Integer 指定每一页返回的最大条目数,默认为“1000”。 sort_by 否 String 指定排序字段,枚举值如下:
json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m3