已找到以下 60 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 排序策略-离线特征工程 - 推荐系统 RES

    数据,取值TIME。 “个数比例”:个数比例是将全部数据按个数比例随机划分成训练集和测试集传入值。取值RAMDOM。 训练数据占比 生成的结果中,训练集占整个训练集和测试集的比例,默认0.7。 测试数据占比 生成的结果中,训练集占整个训练集和测试集的比例,默认0.3。 开启调度

  • 召回策略 - 推荐系统 RES

    略是指通过大数据计算或深度训练生成推荐候选集的算法策略。召回策略中内置了多种召回方式,您可根据自己场景选择。 基于综合行为热度推荐 基于综合行为热度推荐统计用户对物品所有行为的加权热度。如果选择用户分群,将生成每个分组的热度推荐;如果不选择,将生成全局热度推荐。 表1 基于综合行为热度推参数说明

  • 策略参数说明 - 推荐系统 RES

    ItemCF 基于用户的协同过滤推荐 UserCF 基于交替最小二乘的矩阵分解推荐 AlsCF 基于历史行为记忆生成候选集 HistoryBehaviorMemory 人工录入生成候选集 ManualInput sorting 逻辑斯蒂回归 LR 因子分解机 FM 域感知因子分解机 FFM

  • 近线作业 - 推荐系统 RES

    10 过滤历史记录 生成的候选集中是否过滤历史记录,如需要过滤历史记录,则开启此项。 默认关闭。 候选集的排序策略 生成候选集的排列规则,其排列顺序包括: 随机排序:不对候选集排序。 热度排序:根据物品属性表里的物品热度排序,由基于行为数据的用户画像更新生成,热度越大排序越靠前。

  • 召回策略 - 推荐系统 RES

    击设置数据参数。 通用格式 通用格式数据:特征工程“初始用户画像-物品画像-标准宽表生成”算子生成的用户推荐系统的数据。从用户特征表、物品特征表以及用户行为表中提取用户、物品特征和用户行为,并生成json数据,即内部通用格式。 默认选择初始格式 时间选择 时间选择包括数据时间和行为时间跨度。

  • 通过DLF重新执行作业 - 推荐系统 RES

    通过DLF重新执行作业 推荐系统提供了重新执行作业的API,用来将任务以相同的配置重新执行一次,实现对离线任务生成结果的更新。以固定的周期定时调用此API,可保持结果处于一个较新的状态,以获得更好的推荐结果。 以上功能,我们也可以使用数据治理中心 DataArts Studio,

  • 创建自定义场景 - 推荐系统 RES

    离线计算逻辑,通过启动离线计算任务进行候选推荐结果集的生成。 各个召回策略的详细介绍请参见: 基于综合行为热度推荐 基于物品的协同过滤推荐 基于用户的协同过滤推荐 基于交替最小二乘的矩阵分解推荐 业务规则-基于历史行为记忆生成候选集 业务规则-人工导入 基于特征匹配的召回策略 基于UCB的召回策略

  • 过滤规则 - 推荐系统 RES

    过滤规则 过滤规则用于配置候选集的过滤方式,使之不进入候选集。对于每个需要过滤的行为,生成用户具有该行为的物品的列表。再对同用户的每种行为的物品列表进行“与”或者“或”的关系,最终生成用户-物品过滤表。 表1 过滤规则参数说明 参数名称 说明 名称 自定义过滤规则名称。由中文、英

  • 查询数据源任务结果 - 推荐系统 RES

    Double 合法率(请求类型为DATA_INSPECTION时返回)。 inspect_rst_generated_time String 检测结果生成时间(请求类型为DATA_INSPECTION时返回)。 final_report FinalReport object 数据探索报告(请

  • 管理在线服务 - 推荐系统 RES

    作。您也可以通过单击在线服务名称查看在线服务的详细信息。 编辑服务 用户可以通过“编辑”在线服务修改该参数信息进行计算。生成的数据会覆盖原来的在线服务计算生成的数据。“部署中”的在线服务不支持编辑。操作步骤如下: 登录RES管理控制台,在左侧菜单栏中选择“在线服务”,进入服务列表。

  • 数据结构 - 推荐系统 RES

    作可以将离线数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。经过数据质量检测来确保数据的合法性。 数据结构介绍 数据结构步骤的主要目的是读取用户上传的离线数据,解析用户特征和物品特征中每一个属性的数据格式、统计所有行为,然后保存解析生成的数据格式。 前提条件 已按照创建离线数据源操作指导完成数据源的创建。

  • 数据导入 - 推荐系统 RES

    数据,生成画像和宽表。 确认完成单击“执行”,待状态为“已完成”时,生成推荐系统内部通用的画像和宽表数据。 执行完成在页面下方会生成数据相关报告。 “数据导入报告”,显示数据“类型”、“总条目数”、“合法条目数”、“非法条目数”、“重复度”和“合法率”信息。 类型包括生成的用户、

  • 推荐引擎和排序引擎有什么区别? - 推荐系统 RES

    推荐引擎和排序引擎有什么区别? 推荐引擎 推荐引擎是以推荐为业务逻辑的引擎,即系统根据配置生成召回集作为起点,输出推荐结果集为终点的引擎。 排序引擎 排序引擎是以排序为业务逻辑的引擎,即用户提供排序集为输入,系统根据排序算法输出排序结果的引擎。 父主题: 自定义场景

  • 智能场景(猜你喜欢) - 推荐系统 RES

    数据路径选择完成后单击“立即创建”。 离线数据源创建完成后,在数据源列表页面单击目标数据源名称进行数据质量管理,具体操作请参见推荐系统用户指南>数据源质量管理,完成数据探索并生成数据质量报告,此步骤完成后创建的数据源才可用。 步骤3:创建智能场景 登录RES管理控制台,在左侧导航栏中选择“推荐业务>智能场景”,默认进入“智能场景”列表。

  • 自定义场景简介 - 推荐系统 RES

    召回策略通过大数据计算或深度训练生成推荐候选集。 召回策略 过滤规则 过滤规则用于生成推荐的过滤集,包含黑白名单、历史行为过滤等特性。支持用户在线上推理过程中完成对相关物品的过滤。 过滤规则 特征工程 特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。

  • 离线作业简介 - 推荐系统 RES

    特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。 特征工程 召回策略 召回策略用于生成推荐的候选集,在原始数据中通过算法和规则匹配用户的候选集。 召回策略 排序策略 排序策略根据不同的算法模型对召回策略或者近线策略生成的候选集进行重排序,得到推荐候选集列表。

  • 过滤规则 - 推荐系统 RES

    用户操作行为表:初始数据中的用户操作行为表。 “通用格式” 通用格式数据:特征工程“初始用户画像-物品画像-标准宽表生成”算子生成的用户推荐系统的数据。从用户特征表、物品特征表以及用户行为表中提取用户、物品特征和用户行为,并生成json数据,即内部通用格式。 通用格式时间:用户行为数据时间范围,可只有起始时间、结束时间或为空。

  • 特征工程 - 推荐系统 RES

    查看日志等手段处理问题。 初始用户画像-物品画像-标准宽表生成 初始用户画像-物品画像-标准宽表生成,是将初始格式数据(离线数据)处理成用户画像、物品画像以及内部通用格式数据。 表1 初始用户画像-物品画像-标准宽表生成参数说明 参数名称 说明 数据源 数据在OBS的存放路径。包

  • 分词模型 - 推荐系统 RES

    响应参数请参见表2。 表2 响应参数说明 参数名称 是否必选 参数类型 说明 result 是 String 一个由抽取出来的无序的关键词集合生成的字符串,以空格连接。 示例 请求示例 { "mode":"keywords", "title":[ "在

  • RES自定义策略 - 推荐系统 RES

    目前华为云支持以下两种方式创建自定义策略: 可视化视图创建自定义策略:无需了解策略语法,按可视化视图导航栏选择云服务、操作、资源、条件等策略内容,可自动生成策略。 JSON视图创建自定义策略:可以在选择策略模板后,根据具体需求编辑策略内容;也可以直接在编辑框内编写JSON格式的策略内容。 具体