检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
start_time_begin String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours Long 起报时间间隔小时数,默认6。 forecast_lead_hours
start_time_begin String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours Long 起报时间间隔小时数,默认6。 forecast_lead_hours
类数据。 时序数据:时序预测数据是一种按时间顺序排列的数据序列,用于预测未来事件或趋势,过去的数据会影响未来的预测。 回归分类数据:回归分类数据包含多种预测因子(特征),用于预测连续变量的值,与时序数据不同,回归分类数据不要求数据具有时间顺序。 具体格式要求详见表1。 表1 预测类数据集格式要求
2024年10月发布的版本,用于天气基础要素预测,时间分辨率为1小时,1个训练单元起训及1个实例部署。 Pangu-AI4S-Weather_1h-3.0.0 2024年12月发布的版本,相较于10月发布的版本模型运行速度有提升,用于天气基础要素预测,时间分辨率为1小时,1个训练单元起训及1个实例部署。
科学计算大模型的全球中期天气要素预测模型、降水模型,可以对未来一段时间的天气和降水进行预测,具备以下优势: 高时间精度:全球中期天气要素预测模型可以预测未来1、3、6、24小时的天气情况,降水模型可预测未来6小时的降水情况。高时间精度对于农业、交通、能源等领域的决策和规划非常重要。 全球
单击左侧导航栏“调用统计”,选择“NLP”页签。 选择当前调用的NLP大模型,可以按照不同时间跨度查看当前模型的调用总数、调用失败的次数、调用的总Tokens数、以及输入输出的Tokens数等基本信息。 此外,该功能还提供了可视化界面,可额外查看响应时长以及安全护栏拦截次数。 父主题: 调用NLP大模型
查看科学计算大模型部署任务详情 部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建科学计算大模型部署任务后,可以查看模型的部署状态。
查看预测大模型部署任务详情 部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建预测大模型部署任务后,可以查看模型的部署状态。
on格式。必须包含两个及以上后缀名字为avi或者mp4的文件。 每个视频时长要大于128s,FPS>=10,且测试集训练集都要有视频。 支持视频的格式包括常见的mp4/avi格式文件,每个视频时长要大于128s,FPS>=10,用annotation.json对文件进行标注。 单
start_time_begin 是 String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end 是 String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours 否 Long 起报时间间隔小时数,默认6。取值范围:[1,
start_time_begin 是 String 起报时间区间起点(YYYYMMDDHH时间戳)。 start_time_end 是 String 起报时间区间终点(YYYYMMDDHH时间戳)。 start_time_interval_hours 否 Long 起报时间间隔小时数,默认6。取值范围:[1,
预估资源使用周期的场景。 按需计费模式:按需付费是后付费方式,可以随时开通/关闭对应资源,支持秒级计费,系统会根据云服务器的实际使用情况每小时出账单,并从账户余额里扣款。 父主题: 计费FAQ
计费模式 包周期计费模式属于预付费模式,即先付费再使用。按需计费模式属于后付费模式,即费用根据服务实际消耗量计费,系统将每小时自动扣费。 盘古大模型的计费模式见表1。 表1 计费模式表 计费类别 计费项 计费模式 计费量纲 付费方式 计费周期 模型服务 模型订阅服务 包周期计费 套
查看NLP大模型部署任务详情 部署任务创建成功后,可以查看大模型部署任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建NLP大模型部署任务后,可以查看模型的部署状态。
支持选择用于存放作为初始场数据的文件路径。 预报天数 支持选择以起报时间点为开始,对天气要素或降水进行预报的天数,范围为1~14天。 起报时间 支持选择多个起报时间作为推理作业的开始时间,每个起报时间需为输入数据中存在的时间点。 表面变量 支持选择推理结果输出的表面变量,包括10m u风、10m
水模型,可以对未来一段时间的天气和降水进行预测,全球中期天气要素模型和降水模型能够在全球范围内进行预测,不仅仅局限于某个地区。它的分辨率相当于赤道附近每个点约25公里x25公里的空间。通过降水模型预测未来的降雨情况,农民和农业管理者可以更有效地规划灌溉时间和频率,也能为可能发生的
查看专业大模型部署任务详情 部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建专业大模型部署任务后,可以查看模型的部署状态。
组合后的重复此时,可通过以下两种算法比较结果是否大于特征阈值,大于特征阈值的文档删除。 top-gram过滤:计算重复最多的garm占总长度的比例,大于特征阈值则删除。 gram重复率过滤:计算所有重复的garm占总长度的比例,大于特征阈值则删除。 段落特征过滤 根据如下特征过滤:
查看CV大模型部署任务详情 部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建CV大模型部署任务后,可以查看模型的部署状态。
用户配置的示例内容,配置后会在大模型的请求中添加“#示例 {{用户配置的内容}}”。 输入改写 日期时间改写 开启后,用户问题涉及日历、日期及时间相关内容时,系统将进行运算,补充具体时间点,以便大模型更准确的理解。 节点配置完成后,单击“确定”。 连接大模型节点和其他节点。 步骤6:配置插件节点