检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x
、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0
数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表1。 本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x
部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x
、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本
部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x
、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0
AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Huggingface开
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x
部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x
、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0
Workflow多分支运行介绍 当前支持两种方式实现多分支的能力,条件节点只支持双分支的选择执行,局限性较大,推荐使用配置节点参数控制分支执行的方式,可以在不添加新节点的情况下完全覆盖ConditionStep的能力,使用上更灵活。 构建条件节点控制分支执行主要用于执行流程的条件
在Workflow中指定仅运行部分节点 Workflow通过支持预置场景的方式来实现部分运行的能力,在开发工作流时按照场景的不同对DAG进行划分,之后在运行态可选择任意场景单独运行。具体代码示例如下所示: workflow =wf.Workflow( name="image_cls"
当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone
请参见使用ModelArts Standard自动学习实现垃圾分类。 面向AI工程师,熟悉代码编写和调测,您可以使用ModelArts Standard提供的在线代码开发环境,编写训练代码进行AI模型的开发。 如果您想了解如何在ModelArts Standard提供的Noteb
使用SDK如何查看旧版专属资源池列表? 可参考如下代码查看旧版专属资源池列表: from modelarts.session import Session from modelarts.estimator import Estimator algo_info = Estimato
当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone
当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone
AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化