检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
开通API 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 文本补全:给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。例如让模型依据要求写邮件、做摘要总结、生成观点见解等。 多轮
setStreamCallback(StreamAgentCallBack streamAgentCallback); StreamAgentCallBack实现示例: private class StreamAgentCallBackImpl implements StreamAgentCallBack
enabled= 日志打印配置 SDK日志采用slf4j框架,业务项目中可以使用logback、log4j、slf4j默认等具体实现(实现任一即可)。 通过logback实现。 参考以下代码在pom文件中引入logback相关依赖(建议 1.3.1--1.3.8 版本)。 <dependency>
盘古大模型具备文本补全和多轮对话能力,用户在完成盘古大模型套件的订购操作后,需要开通大模型服务,才可以调用模型,实现与模型对话问答。 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 文本补全:提供单轮文本能力,常用于文本生成、文本摘要、闭卷问答等任务。
host信息。 用户认证信息。 云数据库RDS: https://support.huaweicloud.com/rds/index.html - Mysql 否 host信息。 用户认证信息。 Mysql官网: https://www.mysql.com/ - iam认证与SDK配置项的映射关系如下:
install gptcache~=0.1.37 pip install redis-om~=0.1.3 pip install pymysql~=1.1.0 pip install SQLAlchemy~=2.0.19 API手册 API手册请参见SDK API 手册。 父主题:
权限管理 如果您需要为企业员工设置不同的访问权限,以实现对华为云上购买的盘古大模型资源的权限隔离,可以使用统一身份认证服务(IAM)和盘古角色管理功能进行精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,可以跳过本章节,不影响您使用服务的其他功能。
如何调整推理参数,使模型效果最优 推理参数(解码参数)是一组用于控制模型生成预测结果的参数,其可以用于控制模型生成结果的样式,如长度、随机性、创造性、多样性、准确性和丰富度等等。 当前,平台支持的推理参数包括:温度、核采样以及话题重复度控制,如下提供了这些推理参数的建议值和说明,供您参考:
= Caches.of("inMemory") # Redis redis_cache = Caches.of("redis") # mysql sql_cache = Caches.of("sql") 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结果对象。例如,把
面试问题生成 应用场景说明:将面试者的简历信息输入给大模型,基于简历生成面试问题,用于辅助人工面试或实现自动化面试。 父主题: 写作示例
建一个IAM用户,获取IAM用户的Token。 获取Token方法: Token可通过调用“获取Token”接口获取,接口调用示例如下。 伪码 POST https://iam.cn-southwest-2.myhuaweicloud.com/v3/auth/tokens Content-Type:
Agent助手 应用介绍 通过模型对复杂任务的自动拆解与外部工具调用执行能力,通过与用户多轮对话,实现会议室预订场景。 环境准备 Java 1.8。 参考安装章节,完成基础环境准备。 盘古大语言模型。 开发实现 创建配置文件llm.properties, 正确配置iam、pangu配置项。信息收集请参考准备工作。
答案,展示在前端界面。 在该框架中,query改写模块、中控模块和问答模块由大模型具体实现,因此涉及到大模型的训练、优化、部署与调用等流程。pipeline编排流程可以基于python代码实现,也可以人工模拟每一步的执行情况。检索模块可以使用Elastic Search来搭建,也
应用场景 智能客服 在政企场景中,传统的智能客服系统常受限于语义泛化能力和意图理解能力,导致用户需求难以准确捕捉,频繁转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据
基础问答 基础问答(SimpleSkill)提供基础的对话实现。 初始化。 1 2 3 4 5 6 import com.huaweicloud.pangu.dev.sdk.api.llms.LLMs; import com.huaweicloud.pangu.dev.sdk.Template
基础问答 提供简单的对话实现。 初始化 from pangukitsappdev.api.llms.factory import LLMs from pangukitsappdev.api.skill.base import SimpleSkill from langchain.prompts
of(Caches.IN_MEMORY); // Redis Cache cache = Caches.of(Caches.REDIS); // mysql Cache cache = Caches.of(Caches.SQL); 更新数据:指向缓存中添加或修改数据,需要指定数据的键值对和结
如何对盘古大模型的安全性展开评估和防护? 训练智能客服系统大模型需考虑哪些方面? 如何调整训练参数,使盘古大模型效果最优? 如何判断盘古大模型训练状态是否正常? 为什么微调后的盘古大模型总是重复相同的回答? 盘古大模型是否可以自定义人设? 更多 大模型概念类 如何对盘古大模型的安全性展开评估和防护? 训练智能客服系统大模型需考虑哪些方面?
在模型训练或生成过程中加入的惩罚项,旨在减少重复生成的可能性。通过在计算损失函数(用于优化模型的指标)时增加对重复输出的惩罚来实现的。如果模型生成了重复的文本,它的损失会增加,从而鼓励模型寻找更多样化的输出。 Prompt工程相关概念 表3 Prompt工程相关概念说明 概念名 说明
# 核采样值, 和temperature不同时配置 presence_penalty: Optional[float] # 存在惩罚,增加模型谈论新主题的可能性,范围见具体模型API规范 frequency_penalty: Optional[float] # 频率惩罚,降