检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练中一定间隔(${save-interval})保存的模型(包括模型参数、优化器状态、训练迭代次数等)继续训练恢复,而不需要从头开始。 不同点 断点续训:可指定加载训练过程中生成的Megatron格式权重(${user_converted_ckpt_path}) 故障快恢:默认
{vae_out_channels}]") 执行以下命令获取shape信息。 python parse_models_shape.py 可以看到获取的shape信息如下图所示。 图1 shape信息 PyTorch模型转换为Onnx模型(可选) 获取onnx模型有以下两种方式。下文
训练中一定间隔(${save-interval})保存的模型(包括模型参数、优化器状态、训练迭代次数等)继续训练恢复,而不需要从头开始。 不同点 断点续训:可指定加载训练过程中生成的Megatron格式权重(${user_converted_ckpt_path}) 故障快恢:默认
训练中一定间隔(${save-interval})保存的模型(包括模型参数、优化器状态、训练迭代次数等)继续训练恢复,而不需要从头开始。 不同点 断点续训:可指定加载训练过程中生成的Megatron格式权重(${user_converted_ckpt_path}) 故障快恢:默认
训练中一定间隔(${save-interval})保存的模型(包括模型参数、优化器状态、训练迭代次数等)继续训练恢复,而不需要从头开始。 不同点 断点续训:可指定加载训练过程中生成的Megatron格式权重(${user_converted_ckpt_path}) 故障快恢:默认
0:普通集群 1:安全集群 cluster_name 否 String MRS集群名称。可登录MRS控制台查看。 database_name 否 String 导入表格数据集,数据库名字。 input 否 String 表格数据集,HDFS路径。例如/datasets/demo。 ip 否
模型包里面必须包含“model”文件夹,“model”文件夹下面放置模型文件,模型配置文件,模型推理代码文件。 模型文件:在不同模型包结构中模型文件的要求不同,具体请参见模型包结构示例。 模型配置文件:模型配置文件必须存在,文件名固定为“config.json”,有且只有一个,模型
3.2)不同模型推理支持的max-model-len长度说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的max-model-len长度说明如下面的表格所示。如需达到以下值,需要将--gpu-memory-utilization设为0.9。 表2 不同模型推理支持的max-model-len长度
AI Gallery仓库的地址,格式为“http://{ModelArts-Endpoint}.myhuaweicloud.com”,其中不同区域的Endpoint可以在ModelArts地区和终端节点获取。 cached_dir 缓存目录,默认AI Gallery仓库的文件下载至该目录下。
operationTime String 统计的时间。 表4 statistics 参数 参数类型 描述 status status object 不同状态下的资源池统计信息。 表5 status 参数 参数类型 描述 creating Integer 正在创建中的资源池数量。 created
duration Integer 启动后设置的自动停止时间,单位为秒。 store_time Integer 该规格实例处于非活跃状态,在数据库最长保存的时长。单位为小时。 默认为“-1”, 表示可以无限制保存。 billing_flavor String 计费规格。当该字段为空时,使用规格名称计费。
当数据集中的标签发生变化时,需要执行如下语句。此语句需在“mox.run”之前运行。 语句中的“logits”,表示根据不同网络中分类层权重的变量名,配置不同的参数。此处填写其对应的关键字。 mox.set_flag('checkpoint_exclude_patterns', 'logits')
nifest文件所在OBS路径的权限。 Manifest文件编写规范要求较多,推荐使用OBS目录导入方式导入新数据。一般此功能常用于不同区域或不同账号下ModelArts的数据迁移,即当您已在某一区域使用ModelArts完成数据标注,发布后的数据集可从输出路径下获得其对应的Ma
scripts_modellink/llama2/0_pl_sft_70b.sh 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致。其中MASTER_ADDR、 NNODES、 NODE_RANK为必填。 单机启动 对于Llama2-7b和Llam
在JupyterLab的“Launcher”页签下,以TensorFlow为例,您可以单击TensorFlow,创建一个用于编码的文件。 图1 选择不同的AI引擎 文件创建完成后,系统默认进入“JupyterLab”编码页面。 图2 进入编码页面 调用mox.file 输入如下代码,实现如下几个简单的功能。
a_70b.sh xx.xx.xx.xx 4 3; # 多机训练执行命令 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致。其中MASTER_ADDR、NNODES、NODE_RANK为必填项。 单机启动 对于Llama2-7B和Llama
表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE GeneralPretrainHandler 示例值需要根据数据集的不同,选择其一。 GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。
表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE GeneralInstructionHandler 示例值需要根据数据集的不同,选择其一。 GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。
表示训练类型。可选择值:[pretrain, sft, lora]。 DATA_TYPE GeneralInstructionHandler 示例值需要根据数据集的不同,选择其一。 GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。
t_70b.sh xx.xx.xx.xx 4 3; # 多机训练执行命令 以上命令多台机器执行时,只有${NODE_RANK}的节点ID值不同,其他参数都保持一致。其中MASTER_ADDR、 NNODES、 NODE_RANK为必填。 单机启动 对于Llama2-7B和Llam