检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取to
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取to
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取to
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取to
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取to
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取to
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取to
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取to
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取to
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取to
CUDA initialization: Unexpected error from cudaGetDeviceCount() 原因分析 经过对裸金属服务器排查,发现nvidia-drvier和cuda都已安装,并且正常运行。nvidia-fabricmanager服务可以使单节点G
授权API至APP 功能介绍 将指定的API授权给APP。API的认证方式必须为APP认证,APP的创建用户必须是API所属服务的创建者,且请求用户对API所属服务必须有更新权限。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成S
付费工作流可使用的时间值。 响应参数 状态码:201 表4 响应Body参数 参数 参数类型 描述 result String 认证结果。 请求示例 对在线服务进行鉴权。设置付费工作流计费周期为“day”,付费工作流可使用的时间为“100”。 POST https://{endpoint}/
Server适配PyTorch NPU指导(6.3.910) 本文档主要介绍如何在ModelArts Lite的Server环境中,使用NPU卡对MiniCPM-V2.0进行LoRA微调及推理。本文档中提供的训练脚本,是基于原生MiniCPM-V的代码基础适配修改,可以用于NPU芯片训练。
rts.4206”。 原因分析 ModelArts.4206表示该API的请求流量超过了设定值。为了保证服务的平稳运行,ModelArts对单个API的推理请求流量做了限制,同时为了保证推理服务可以稳定运行在合理区间,ModelArts将限流值设定在一个较高区间。 处理办法 降低
更新API授权 功能介绍 更新API的授权关系。API的认证方式必须为APP认证,APP的创建用户必须是API所属服务的创建者,且请求用户对API所属服务必须有更新权限。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成S
Pytorch NPU分布式训练 场景描述 ranktable路由规划是一种用于分布式并行训练中的通信优化能力,在使用NPU的场景下,支持对节点之间的通信路径根据交换机实际topo做网络路由亲和规划,进而提升节点之间的通信速度。 本案例介绍如何在ModelArts Lite场景下
更新在线服务 使用场景:使用新版本的模型对已有的服务进行更新,需要保证新版本的模型与已部署服务的模型名称一致。 import modelarts.workflow as wf # 通过ServiceStep来定义一个服务部署节点,输入指定的模型对已部署的服务进行更新 # 定义模型名称参数
精度校验 转换模型后执行推理前,可以使用benchmark工具对MindSpore Lite云侧推理模型进行基准测试。它不仅可以对MindSpore Lite云侧推理模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。 精度测试 benc
cache 由于CogVideoX1.5对显存需求较大,直接训练显存不足,训练采用data cache,将text encoder和vae两个不参与训练的模型对数据集进行预编码处理。 cd /home/ma-user/finetrainers 对/home/ma-user/finet