检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
7”。 engine_name String 引擎规格的名称。如“Caffe”。 engine_version String 引擎规格的版本。对一个引擎名称,有多个版本的引擎,如使用python2.7的"Caffe-1.0.0-python2.7"等。 v1_compatible Boolean
问题2:访问容器目录时提示Permission denied 解决方法: 由于在容器中没有相应目录的权限,会导致访问时提示Permission denied。可以在宿主机中对相关目录做权限放开,执行命令如下。 chmod 777 -R ${dir} 问题3:训练过程报错:ImportError: XXX not found
placeholder_type=wf.PlaceholderType.BOOL), right=True) # 构建一个OutputStorage对象,对训练输出目录做统一管理 storage = wf.data.OutputStorage(name="storage_name", title="title_info"
rs进行推理,因为没有框架的优化,执行时间最长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local
从0制作自定义镜像用于创建训练作业(Pytorch+Ascend) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是专属资源池的Ascend芯片。 准备工作 准备一套可以连接外部网络,装有Linux系统并安装18
”、“歌手”等。 name 否 String 标签名称。 property 否 LabelProperty object 标签基本属性键值对,如颜色、快捷键等。 type 否 Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体
态路由加速。 训练使用的Python版本是3.7或3.9。 训练作业的实例数要大于或等于3。 路由加速的原理是改变rank编号,所以代码中对rank的使用要统一。 将训练作业完成如下修改后,启动训练作业即可实现网络加速。 将训练启动脚本中的“NODE_RANK="$VC_TASK
搜索尝试的超参组数 int,一般在10-20之间,值越大,搜索时间越长,效果越好 n_initial_points 采用TPE接近目标函数之前,对目标函数的随机评估数 int,一般不建议用户修改 gamma TPE算法的一定分位数,用于划分l(x)和g(x) float,范围(0,1),一般不建议用户修改
Turbo,以便能够通过Notebook访问SFS Turbo服务。随后,通过Notebook将OBS中的数据上传至SFS Turbo,并对存储在SFS Turbo中的数据执行编辑操作。 创建Notebook 创建开发环境Notebook实例,具体操作步骤请参考创建Notebook实例。
问题2:访问容器目录时提示Permission denied 解决方法: 由于在容器中没有相应目录的权限,会导致访问时提示Permission denied。可以在宿主机中对相关目录做权限放开,执行命令如下。 chmod 777 -R ${dir} 问题3:训练过程报错:ImportError: XXX not found
问题2:访问容器目录时提示Permission denied 解决方法: 由于在容器中没有相应目录的权限,会导致访问时提示Permission denied。可以在宿主机中对相关目录做权限放开,执行命令如下。 chmod 777 -R ${dir} 问题3:训练过程报错:ImportError: XXX not found
支持给创建出来的节点加taints来设置反亲和性,非特权池不能指定。 labels 否 Map<String,String> k8s标签,格式为key/value键值对。 tags 否 Array of UserTag objects 资源标签,非特权池不能指定。 network 否 NodeNetwork
data=data), outputs=wf.steps.LabelingOutput(name="labeling_output"), ) # 对标注任务进行发布 release_step = wf.steps.ReleaseDatasetStep( name="release"
”、“歌手”等。 name 否 String 标签名称。 property 否 LabelProperty object 标签基本属性键值对,如颜色、快捷键等。 type 否 Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体
sh,脚本里面有某些环境变量在新版本下发的作业中并不存在这些环境变量导致。 可能原因是使用Python file接口并发读写同一文件。 处理方法 对挂载盘的数据加权限,可以改为与训练容器内相同的用户组(1000),假如/nas盘是挂载路径,执行如下代码。 chown -R 1000:1000
段进行智能标注,降低人工标注量,帮助用户找到难例。 “预标注”表示选择用户模型管理里面的模型进行智能标注。 “自动分组”是指先使用聚类算法对未标注图片进行聚类,再根据聚类结果进行处理,可以分组打标或者清洗图片。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API
在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”查看预测结果。此处提供一个样例图片供预测使用。 本案例中使用的订阅模型可以识别81类常见超市商品,模型对预测图片有一定范围和要求,不满足条件的图片会影响预测结果的准确性。 步骤5:清理资源 体验结束后,建议暂停或删除服务,避免占用资源,造成资源浪费。
”、“歌手”等。 name 否 String 标签名称。 property 否 LabelProperty object 标签基本属性键值对,如颜色、快捷键等。 type 否 Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体
作列的“打通VPC”。 图2 打通VPC 在打通VPC弹框中,打开“打通VPC”开关,在下拉框中选择提前创建好的VPC和子网。 需要打通的对端网络不能和当前网段重叠。 创建Modelarts专属资源池。 在控制台左侧导航栏中选择“AI专属资源池 > 弹性集群Cluster”。 在
模型部署的实例数,当前限制最大实例数为128,部署本地服务Predictor时,取值为1。 envs 否 Map<String, String> 运行模型需要的环境变量键值对,可选填,默认为空。 表3 部署本地服务predictor返回参数说明 参数 是否必选 参数类型 描述 predictor 是 Predictor对象