检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。
Step3 启动训练脚本 修改超参值后,再启动训练脚本。Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 多机执行命令为:sh
${vllm_path}:指定到ascend_vllm文件夹的绝对路径。 进入工作目录。 cd ascend_vllm Step4 部署并启动推理服务 在Step3中的terminal部署并启动推理服务。有2种方式,使用vllm-api启动推理服务,或者使用openai-api启动推理服务。参考命令如下:
化功能,启动推理服务前,先参考使用AWQ量化、使用SmoothQuant量化或使用GPTQ量化章节对模型做量化处理。 Step8 启动scheduler实例 建议在PD服务(即全量推理和增量推理服务)启动后,再启动scheduler服务。 启动scheduler容器。启动容器镜像
分离部署的实例类型启动分为以下三个阶段: 步骤六 启动全量推理实例:必须为NPU实例,用于启动全量推理服务,负责输入的全量推理。全量推理占用至少1个容器。 步骤七 启动增量推理实例:必须为NPU实例,用于启动增量推理服务,负责输入的增量推理。增量推理占用至少1个容器。 步骤八 启动sche
练tokenizer文件说明。 步骤三 启动训练脚本 请根据步骤二 修改训练超参配置修改超参值后,再启动训练脚本。Llama2-70B建议为4机32卡训练。 多机启动 以 Llama2-70B 为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。 进入代码目录 /h
自定义脚本内容 ... # run.sh调用app.py启动服务器,app.py请参考https示例 python app.py 除了按上述要求设置启动命令,您也可以在镜像中自定义启动命令,在创建AI应用时填写与您镜像中相同的启动命令。 提供的服务可使用HTTPS/HTTP协议和监听
kenizer文件说明。 Step3 启动训练脚本 请根据Step2 修改训练超参配置修改超参值后,再启动训练脚本。Llama2-70B建议为8机64卡训练。 多机启动 以 Llama2-70B 为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。 进入代码目录 /
kenizer文件说明。 Step3 启动训练脚本 请根据Step2 修改训练超参配置修改超参值后,再启动训练脚本。Llama2-70B建议为4机32卡训练。 多机启动 以 Llama2-70B 为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。 进入代码目录 /
练tokenizer文件说明。 步骤三 启动训练脚本 请根据步骤二 修改训练超参配置修改超参值后,再启动训练脚本。Llama2-70B建议为4机32卡训练。 多机启动 以 Llama2-70B 为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。 进入代码目录 /h
为性能会有损失。 如果需要增加模型量化功能,启动推理服务前,先参考使用AWQ量化或使用SmoothQuant量化章节对模型做量化处理。 启动服务与请求。此处提供vLLM服务API接口启动和OpenAI服务API接口启动2种方式。详细启动服务与请求方式参考:https://docs
kenizer文件说明。 Step3 启动训练脚本 请根据Step2 修改训练超参配置修改超参值后,再启动训练脚本。Llama2-70B建议为4机32卡训练。 多机启动 以 Llama2-70B 为例,多台机器执行训练启动命令如下。多机启动需要在每个节点上执行。 进入代码目录 /
/nas 如果是自定义镜像中拉取的.sh脚本没有执行权限,可以在自定义脚本启动前执行"chmod +x xxx.sh"添加可执行权限。 ModelArts控制台上创建训练作业自定义镜像入口,默认以1000 uid用户来启动v2容器镜像,将ma-user的uid从1102改为1000,改变
Step3 启动训练脚本 修改超参值后,再启动训练脚本。其中 Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 示例:
Step3 启动训练脚本 修改超参值后,再启动训练脚本。其中 Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。
步骤三 启动训练脚本 修改超参值后,再启动训练脚本。Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。 启
步骤三 启动训练脚本 修改超参值后,再启动训练脚本。其中 Llama2-70b建议为4机32卡训练。 多机启动 以 Llama2-70b为例,多台机器执行训练启动命令如下。进入代码目录 /home/ma-user/ws/llm_train/AscendSpeed 下执行启动脚本。
根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。
根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。
根据config.yaml启动作业 启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。