检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/命令,报错[Errno 13] Permission denied……。 原因分析 当前目录下包含没有权限的文件。 解决方法 建议用户新建一个文件夹(例如:tb_logs),将tensorboard的日志文件(例如:tb.events)放到新建的文件夹下,然后执行tensorboard命令。示例命令如下:
String 如要搜索多个标签,则op需要有值;如果只搜索一个标签,则无需指定op的值。可选值如下: OR:或操作 AND:与操作 表6 SearchLabel 参数 是否必选 参数类型 描述 name 否 String 标签名。 op 否 String 多个属性之间的操作类型。可选值如下:
约束与限制 华为云账号 只有华为云账号可以使用委托授权,可以为当前账号授权,也可以为当前账号下的所有IAM用户授权。 多个IAM用户或账号,可使用同一个委托。 一个账号下,最多可创建50个委托。 对于首次使用ModelArts的新用户,请直接新增委托即可。一般用户新增普通用户权限即
Serving是一个灵活、高性能的机器学习模型部署系统,提供模型版本管理、服务回滚等能力。通过配置模型路径、模型端口、模型名称等参数,原生TFServing镜像可以快速启动提供服务,并支持gRPC和HTTP Restful API的访问方式。 Triton是一个高性能推理服务框架
”,单击右上角“创建用户”,在“创建用户”页面中,添加多个用户。请根据界面提示,填写必选参数,然后单击“下一步”。 将子用户子账号加入用户组。在“加入用户组”步骤中,选择“用户组”,然后单击“创建用户”。系统将前面设置的多个用户加入用户组中。 用户登录并验证权限。 新创建的用户登录控制台,切换至授权区域,验证权限:
/compare.json -o ./output -s 生成CSV分析表格之后进行分析,该问题第一个偏差来源如下: Tensor.__getitem__.0 在forward阶段的第一个输入存在偏差,追溯输入来源发现是torch.randint()函数在device侧随机初始化(下
在线服务创建。本案例适用于CPU规格,节点规格需选择CPU。如果有免费CPU规格,可选择免费规格进行部署(每名用户限部署一个免费的在线服务,如果您已经部署了一个免费在线服务,需要先将其删除才能部署新的免费在线服务)。 图7 部署模型 完成服务部署后,返回在线服务页面列表页,等待服
可视化工具。TensorBoard是TensorFlow的可视化工具包,提供机器学习实验所需的可视化功能和工具。 TensorBoard是一个可视化工具,能够有效地展示TensorFlow在运行过程中的计算图、各种指标随着时间的变化趋势以及训练中使用到的数据信息。TensorBo
经常不能一次性获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率、AUC等,能帮助您有效的评估,最终获得一个满意的模型。 部署模型 模型的开发训练,是基于之前的已有数据(有可能是测试数据),而在得到一个满意的模型之后,需要
remove('obs://bucket_name/sub_dir_0', recursive=True) 移动和复制操作 移动一个OBS文件或文件夹。移动操作本身是用“复制+删除”来实现的。 一个OBS文件移动到另一个OBS文件,例如将“obs://bucket_name/obs_file.txt”移动到“ob
为"/root/执行ID/directory_path" 通过join方法的参数实现同一个Storage的不同用法 import modelarts.workflow as wf # 构建一个Storage对象, 并且假设Storage配置的根目录为"/root/" storage
driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的I
昇腾迁移融合算子API替换样例 部分torch原生的API在下发和执行时会包括多个小算子,下发和执行耗时较长,可以通过替换成NPU API来使能融合算子,提升训练性能。 API替换总览 •torch_npu.optim.NpuFusedAdamW •optimizer.clip_grad_norm_fused_
device 原因分析 数据下载至容器的位置空间不足。 处理方法 请排查是否将数据下载至“/cache”目录下,GPU规格资源的每个节点会有一个“/cache”目录,空间大小为4TB。并确认该目录下并发创建的文件数量是否过大,占用过多存储空间会出现inode耗尽的情况,导致空间不足。
复上述操作继续进行图片标注。如果一张图片有多个物体,您可以标注多处。 同一个物体检测自动学习项目内,可以增加多个标签,且标签可选择不同颜色,方便识别。使用鼠标完成物体框选后,在弹出的对话框中,选择新的颜色,输入新的标签名称,即可添加一个新的标签。 自动学习项目中,物体检测仅支持矩形标注框。在“资产管理
场景介绍 本小节通过一个具体问题案例,介绍模型精度调优的过程。 如下图所示,使用MindSpore Lite生成的图像和onnx模型的输出结果有明显的差异,因此需要对MindSpore Lite pipeline进行精度诊断。 图1 结果对比 在MindSpore Lite 2.0
实例数 必填,根据需要选择实例数的个数。默认值为“1”。 当“实例数 = 1”时,创建的是单机训练作业,ModelArts只会在一个节点上启动一个训练容器,该训练容器独享所选规格的计算资源。 当“实例数 > 1”时,创建的是分布式训练作业,更多分布式训练配置请参见分布式训练功能介绍。
、bool、Placeholder、Sequence、Condition、MetricInfo。 一个ConditionStep支持多个Condition对象,使用list表示,多个Condition之间进行&&操作。 if_then_steps和else_then_steps。
共享池和专属池的区别是什么? 共享池是所有ModelArts共享的一个资源池,当使用人数比较多的时候,可能造成资源紧张而产生排队。 专属池是专属于您的资源池,不会因为资源紧张而产生排队,同时专属资源池支持打通自己的VPC,能和自己的资源网络互通。 父主题: Standard资源池
长训Loss比对结果 在单卡环境下,执行一个Epoch训练任务,GPU和NPU训练叠加效果如下: 上图中的红色曲线为GPU Loss折线图,蓝色曲线为NPU训练Loss折线图。在整网训练单个Epoch情况下,Loss总体的绝对偏差大约为0.08181。 父主题: 精度对齐