检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
文本类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持文本类数据集的加工操作,分为数据提取、数据转换、数据过滤三类,文本类加工算子能力清单见表1。
气象类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类加工算子能力清单
图片类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台提供了图文类、图片类加工算子,算子能力清单见表1、表2。 图文类加工算子能力清单 表1
视频类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签和评分等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的加工操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。
帮助用户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词,它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型(NLP大模型、科学计算大模型)在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题
产品功能 空间管理 数据工程 模型开发 Agent开发
线为原始数据集。 步骤2:加工文本类数据集 本样例场景帮助用户利用数据集加工算子处理原始数据集。 步骤3:标注文本类数据集 本样例场景帮助用户高效完成数据标注任务,提升标注数据的可靠性和可用性。 步骤4:评估文本类数据集 本样例场景帮助用户利用数据集评估标准评估和优化数据质量。 步骤5:发布文本类数据集
构建的优点是数据丰富度更高,缺点是成本较高。 当您将无监督数据构建为有监督数据时,请尽可能保证数据的多样性。建议将不同文本构建为不同的场景,甚至将同一段文本构建为多个不同的场景。 不同规格的模型支持的长度不同,当您将无监督数据构建为有监督数据时,请确保数据长度符合模型长度限制。 父主题:
数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或
的效率。 每个数据并行下的批处理大小 设置在并行训练中,每个微批次包含的数据批量大小,适当的数据批量大小能够确保训练各个阶段都能充分利用计算资源,提升并行效率。 数据配置 训练数据 选择训练模型所需的数据集。要求数据集经过发布操作,发布数据集操作方法请参见发布数据集。 资源配置 计费模式
ObsStorageDto objects 输入数据的OBS信息。 表4 ObsStorageDto 参数 是否必选 参数类型 描述 bucket 是 String 输入数据的OBS桶名称。 path 是 String 初始场数据的存放路径。 表5 TaskOutputDto 参数
准备工作 申请试用盘古大模型服务 配置服务访问授权 创建并管理盘古工作空间
ObsStorageDto objects 输入数据的OBS信息。 表4 ObsStorageDto 参数 是否必选 参数类型 描述 bucket 是 String 输入数据的OBS桶名称。 path 是 String 初始场数据的存放路径。 表5 TaskOutputDto 参数
盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和数据主权保护等机制。在训练和推理过程中,通过数据脱敏、隐私计算
测,不仅仅局限于某个地区。它的分辨率相当于赤道附近每个点约25公里*25公里的空间。 数据驱动:中期天气要素预测模型使用历史天气数据来训练模型,从而提高预测的准确性。这意味着它可以直接利用过去的观测数据,而不仅仅依赖于数值模型。 中期天气要素预测模型信息见表1。 表1 中期天气要素预测模型信息
变更计费模式 盘古大模型的模型订阅服务、数据托管服务、推理服务默认采用包周期计费,数据智算服务、数据通算服务、训练服务默认采用按需计费。 盘古大模型使用周期内不支持变更配置。
用于存放模型推理结果的OBS路径。 输入数据 支持选择用于存放作为初始场数据的文件路径。 预报天数 支持选择以起报时间点为开始,对天气要素或降水进行预报的天数,范围为1~14天。 起报时间 支持选择多个起报时间作为推理作业的开始时间,每个起报时间需为输入数据中存在的时间点。 表面变量 支持选择推理结果输出的表面变量,包括10m
数据预处理:数据预处理是数据准备过程中的重要环节,旨在提高数据质量和适应模型的需求。常见的数据预处理操作包括: 去除重复数据:确保数据集中每条数据的唯一性。 填补缺失值:填充数据中的缺失部分,常用方法包括均值填充、中位数填充或删除缺失数据。 数据标准化:将数据转换为统一的格式或范围,特别是在处理数值型数据时(如归一化或标准化)。