检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据类型,DWS.DWS类型数据集,LOCAL_CSV.本地文件类型数据集,MRS.HIVE类型数据集,MYSQL.MySql类型数据集,ORACLE.Oracle类型数据集,RDS.RDS类型数据集 description String 描述 id String 数据集id name String
编写完成后单击“保存”和“提交审批”,由于这条sql使用到了大数据厂商B的数据集,为保证数据安全和参与方的知情权,tics服务会自动解析sql语句将大数据厂商B需要执行的sql语句发送到大数据厂商B的计算节点上,当大数据厂商B同意审批之后才可以执行该条sql。 除此之外,tics服务会基于数据集的安全
管理密钥 密钥用于对加密的数据文件进行AES加解密。在多方安全计算作业场景,当SQL语句使用系统函数进行AES加解密时需要使用密钥。 约束限制 上传密钥文件需要以.key为后缀结尾。 上传密钥文件大小不超过256B。 上传密钥文本为base64编码之后的密钥,长度小于1000。 上传密钥
否 String 连接器类型,主要分为多方安全计算连接器和可信联邦学习连接器。 多方安全计算连接器 MRS, RDS_MYSQL, DWS, JDBC, MYSQL, ORACLE, 可信联邦学习连接器 LOCAL 请求参数 表2 请求Header参数 参数 是否必选 参数类型
间结果过大,需要调高该参数。 max.result.file.size:最大存储文件大小,默认10GB。如果最终结果存储超过这个大小,则会执行失败,需要调大该值。 tics.task.concurrency:在TICS所属计算节点执行计算时的并行度,默认值为1。当需要提升作业性能
多方安全计算是可信智能计算服务(TICS)提供的关系型数据安全共享和分析功能。 您可以创建多方安全计算作业,根据合作方已提供的数据,编写相关SQL作业并获取您所需要的分析结果,能够在作业运行的同时保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 父主题: 服务介绍
是否必选 参数类型 描述 dataset_type 是 String 数据集类型,按照传入枚举类型,返回所属作业类型的数据集。例如:传入MYSQL,返回分析作业可用的数据集;传入LOCAL_CSV,返回学习作业可用数据集 agent_id 否 String 可信计算节点id,最大32位,由字母和数字组成
准备数据 企业A和大数据厂商B需要按照训练模型使用的特征,提供用于预测的数据集,要求预测的数据集特征必须包含训练时使用的特征。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 float 企业A数据特征 industry_predict
批量预测 > 创建”按钮,进入联邦预测作业的创建页面。企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用TICS联邦预测进行新数据离线预测
发布数据集 企业A将自己的需要预测的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建用于预测的数据集。 企业A预测数据集如下: 大数据厂商B仍使用训练时的提供的全量数据作为预测数据集,没有发布新的数据集。 父主题: 使用TICS联邦预测进行新数据离线预测
使用TICS联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景
是高价值用户的模型。 本文主要介绍企业A和大数据厂商B如何通过已有的模型对新的业务数据进行预测。 父主题: 使用TICS联邦预测进行新数据离线预测
可以看出企业A提供的预测数据集中有部分用户被模型预测成了高价值的客户,后续企业A可以对这一部分用户进行定向精准营销,缩小营销广告的投放范围,减少了营销的成本。 当两方都提供特征时,预测结果分为对齐id文件(只有一列id)和预测结果文件(包括预测结果标签、0的概率、1的概率),两个文件的行数相等且每一行相互对应。
计算节点如何切换状态? 切换计算节点状态 用户需要计算节点短暂脱离空间,一段时间内不想被其他参与方使用自己的数据时,可以手动触发计算节点下线。即“计算节点状态”为“在线”时,触发单击下线,计算节点会切换成离线状态,180秒后空间其他参与方无法使用该计算节点已发布的数据集运行作业。
同一个空间中的用户,在使用可信计算服务时(多方安全计算和可信联邦学习),需要部署计算节点,将数据上传,作为可信计算服务的输入,通过执行多方安全计算和可信联邦学习作业后,最终拿到结果。 计算节点以容器的形式部署,支持云容器引擎(CCE,Cloud Container Engine)服务和智能边缘平台(IEF,Intelligent
同一个空间中的用户,在使用可信计算服务时(多方安全计算和可信联邦学习),需要部署计算节点,将数据上传,作为可信计算服务的输入,通过执行多方安全计算和可信联邦学习作业后,最终拿到结果。 计算节点以容器的形式部署,支持云容器引擎(CCE,Cloud Container Engine)服务和智能边缘平台(IEF,Intelligent
习),需要部署计算节点,接入己方数据,作为可信计算服务的输入,通过执行联邦分析和联邦机器学习作业后,最终拿到结果。 计算节点以容器的形式部署,支持云租户部署和边缘节点部署,用户可根据数据源的现状,采用合适的计算节点部署方案。 云租户部署:基于云容器引擎(CCE,Cloud Container
environment variables CLOUD_SDK_AK and CLOUD_SDK_SK in the local environment ak = os.environ["CLOUD_SDK_AK"] sk = os.environ["CLOUD_SDK_SK"]
间结果过大,需要调高该参数。 max.result.file.size:最大存储文件大小,默认10GB。如果最终结果存储超过这个大小,则会执行失败,需要调大该值。 tics.task.concurrency:在TICS所属计算节点执行计算时的并行度,默认值为1。当需要提升作业性能
filter参数为true。 开启初筛后,做PSI或者聚合join前,会将提前做过安全处理的小表id放置到大表代理侧,进行提前过滤和初筛。大大减少了需要在网络中消耗的时间,避免传递不需要输出的数据。